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Outline

► Power Electronics 101
► Global Megatrends
► Resulting Requirements for Power Electronics 
► Multi-Objective Optimization Approach
► Google Little Box Challenge
► Ultra Compact GaN Based Power Conversion
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Basic Structure of Electronic Power 
Processing Systems

Power Electronic Systems
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► Power Electronics 101

Power Semiconductors Circuits
Control Engineering Sensors/Signal Electronics
Electronics Electromagnetic Systems
Drives/El. Machines Energy Systems  
Simulation EMC

■ Basic Principle Step-Down DC/DC Conversion
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Sensors

Control
Communication

Voltage
Frequency

Voltage
Frequency

EMC

Power Semiconductors
Power Passives

Interconnections

EMC

Highest Efficiency
Highest Compactness
Highest Dynamics
Highest Compatibility
Highest Reliability

■ Electronic Power Processing

► Power Electronics 101
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Highest Efficiency
Highest Compactness
Highest Dynamics
Highest Compatibility
Highest Reliability

► Power Electronics 101
■ Electronic Power Processing

Example of a Three-Phase 
AC/AC Matrix Converter
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► Power Electronics Applications 
■ Industry Automation / Processes
■ Communication & Information
■ Transportation
■ Lighting
■ etc., etc.                                   

…. Everywhere !
Source: https://www.electrical4u.com/application-of-
power-electronics/
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Global
Megatrends

Climate Change 
Digitalization
Sustainable Mobility
Urbanization
Alleviate Poverty
Etc.
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Global
Megatrends

Digitalization
Sustainable Mobility
Urbanization
Alleviate Poverty
Etc.

Climate Change
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Average Increase 
0.4%/a

► Climate Change

■ CO2 Concentration  &  Temperature Development
■ Evidence from Ice Cores

► Reduce CO2 Emissions Intensity (CO2/GDP) to Stabilize Atmospheric CO2 Concentration
► 1/3 in 2050 → less than 1/10 in 2100 (AIST, Japan @ IEA Workshop 2007)



11/91

Source: H. Nilsson
Chairman IEA DSM Program 
FourFact AB

► Climate Change

► Reduce CO2 Emissions Intensity (CO2/GDP) to Stabilize Atmospheric CO2 Concentration
► 1/3 in 2050 → less than 1/10 in 2100 (AIST, Japan @ IEA Workshop 2007)

■ CO2 Concentration  &  Temperature Development
■ Evidence from Ice Cores
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Medium-Voltage Power 
Collection and Connection

to On-Shore Grid

 Utilize Renewable Energy (1)

─ Higher Reliability (!)
─ Lower Costs

► Off-Shore Wind Farms
► Medium Voltage Systems

■ Enabled by Power Electronics

Source: M. Prahm / Flickr
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Source:                         2006

 Utilize Renewable Energy (2)

─ Extreme Cost Pressure (!) 
─ Higher Efficiency
─ Higher Power Density

► Photovoltaics Power Plants
► Up to Several MW Power Level
► Future Hybrid PV/Therm. Collectors  

■ Enabled by Power Electronics
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─ Electrolysis for Conversion of Excess Wind/Solar Electric Energy into      Hydrogen  
 Fuel-Cell Powered Cars
 Heating

Hydrogenics 100 kW 
H2-Generator (η=57%),
High Power @ Low 
Voltage

Source: www.r-e-a.net

■ Enabled by Power Electronics

 Utilize Renewable Energy (3)
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Global
Megatrends

Climate Change

Sustainable Mobility
Urbanization
Alleviate Poverty
Etc.

Digitalization
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► Digitalization

■ Internet of Things (IoT)  / Cognitive Computing

► Moore's Law ► Metcalfe's Law

─ Ubiquitous Computing / BIG DATA
─ Blockchain Tech. / DApps.
─ Fully Automated Manufacturing / Industry 4.0
─ Autonomous Cars 
─ Etc.



– Moving form Hub-Based
to Community Concept Increases

Potential Network Value 
Proportional to n2)

Source: Intel Corp.
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Server-Farms
up to 450 MW

99.9999%/<30s/a
$1.0 Mio./Shutdown

Since 2006 
Running Costs > 

Initial Costs

─ Ranging from Medium Voltage to Power-Supplies-on-Chip
─ Short Power Supply Innovation Cycles
─ Modularity / Scalability

─ Higher Power Density (!)
─ Higher Efficiency (!)
─ Lower Costs



■ Enabled by Power Electronics 

Source: REUTERS/Sigtryggur Ari

 Green / Zero                Datacenters (1)
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► Power Density Increased by
Factor 2 over 10 Years

─ Ranging from Medium Voltage to Power-Supplies-on-Chip
─ Short Power Supply Innovation Cycles
─ Modularity / Scalability

─ Higher Power Density (!)
─ Higher Efficiency (!)
─ Lower Costs

■ Enabled by Power Electronics 

 Green / Zero                Datacenters (2)
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 Fully Automated Manufacturing – Industry 4.0

Source:

─ Lower Costs (!)
─ Higher Power Density 
─ Self-Sensing etc.

■ Enabled by Power Electronics
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► ABB´s Future Subsea 
Power Grid  “Develop
All Elements for a 
Subsea Factory”

■ Enabled by Power Electronics

 Fully Automated Raw Material Extraction

─ High Reliability (!)
─ High Power Density (!) Source: matrixengineered.com
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Global
Megatrends

Climate Change
Digitalization

Urbanization
Alleviate Poverty
Etc.

Sustainable Mobility
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► Sustainable Mobility

www.theicct.org

■ EU Mandatory 2020 CO2 Emission Targets for New Cars

─ 147g CO2/km for Light-Commercial Vehicles 
─ 95g CO2/km for Passenger Cars
─ 100% Compliance in 2021

► Hybrid Vehicles
► Electric Vehicles
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FF-ZERO1
750kW / 322km/h
1 Motor per Wheel 
300+ Miles Range

Lithium-Ion Batteries along the Floor 

 Electric Vehicles

─ Higher Power Density
─ Extreme Cost Pressure (!)

■ Enabled by Power Electronics - Drivetrain / Aux. / Charger 
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─ Hyperloop 
─ San Francisco  Los Angeles in 35min

► Low Pressure Tube
► Magnetic Levitation
► Linear Ind. Motor
► Air Compressor in Nose

www.spacex.com/hyperloop

 Futuristic Mobility Concepts (1)

■ Enabled by Power Electronics
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► Eff. Optim. Gas Turbine  
► 1000Wh/kg Batteries  
► Distrib. Fans (E-Thrust)
► Supercond. Motors 
► Med. Volt. Power Distrib.

Source:

 Futuristic Mobility Concepts (2)

■ Enabled by Power Electronics

─ Cut Emissions Until 2050  
* CO2 by 75%, 
* NOx by 90%, 
* Noise Level by 65%

Future Hybrid 
Distributed Propulsion Aircraft
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Source:   

► Electric Power Distribution 
► High Flex. in Generator/Fan Placement
► Generators: 2 x 40.2MW / Fans: 14 x 5.74 MW  (1.3m Diameter)

NASA N3-X 
Vehicle Concept using 

Turboel. Distrib. Propulsion

 Futuristic Mobility Concepts (3)

■ Enabled by Power Electronics
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Global
Megatrends

Climate Change
Digitalization
Sustainable Mobility

Alleviate Poverty
Etc.

Urbanization
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► Urbanization
■ 60% of World Population Exp. to Live in  Urban Cities  by 2025
■ 30 MEGA Cities Globally  by 2023

─ Smart Buildings 
─ Smart Mobility
─ Smart Energy / Grid 
─ Smart ICT, etc.

► Selected Current & Future MEGA Cities  2015  2030

Source: World Urbanization
Prospects: The 2014 Revision



29/91

Source:

 Smart Cities / Grid (1)

■ Enabled by Power Electronics

www.masdar.ae 

─ Masdar = “Source”
─ Fully Sustainable Energy Generation

* Zero CO2
* Zero Waste

─ EV Transport / IPT Charging
─ to be finished  2025
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Source:

www.masdar.ae 

 Smart Cities / Grid (2)

■ Enabled by Power Electronics

─ Masdar = “Source”
─ Fully Sustainable Energy Generation

* Zero CO2
* Zero Waste

─ EV Transport / IPT Charging
─ to be finished  2025
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Global
Megatrends

Climate Change
Digitalization
Sustainable Mobility
Urbanization

Etc.
Alleviate Poverty
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► Urgent Need for Village-Scale Solar DC Microgrids etc. 
► 2 US$ for 2 LED Lights + Mobile-Phone Charging / Household  / Month (!)

► Alleviate Poverty
■ 2 Billion People are Lacking Access to Clean Energy 
■ Rural Electrification in the Developing World 
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… in SummarySource: whiskeybehavior.info
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► Future Extensions of Power Electronics Application Areas

■ Power Electronics Covers an Extremely Wide Power / Voltage / Frequency Range
■ Extensions for SMART xxx / Mobility Trends / Availability Requirements

─ Medium-Voltage / Medium. Frequ. Conv.
─ 3D-Integr. of Low Power Converters
─ Life-Cycle & Reliability Analysis

► Current / New Application Areas (1)
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► Cost Pressure as Common Denominator of All Applications (!)
► Key Importance of Technology Partnerships of Academia & Industry  

■ Commoditization / Standardization for High Volume Applications 
■ Extension to Microelectronics-Technology (Power Supply on Chip)
■ Extensions to  MV/MF   

► Current / New Application Areas (2)
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Mutual Coupling of Performances

Power Converter 
Design Challenges 
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► Required Power Electronics 
Performance Improvements

─ Power Density   [kW/dm3]
─ Power per Unit Weight  [kW/kg]
─ Relative Costs    [kW/$]
─ Relative Losses  [%]
─ Failure Rate    [h-1]

■ Performance  Indices

[kgFe    /kW] 
[kgCu    /kW]
[kgAl /kW]
[cm2

Si /kW]

►

►

Environmental Impact…
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► Multi-Objective Design Challenge (1)

■ Counteracting Effects of Key Design Parameters
■ Mutual Coupling of Performance Indices  Trade-Offs

 Large Number of Degrees of Freedom / Multi-Dimensional Design Space 
 Full  Utilization of Design Space only Guaranteed by  Multi-Objective Optimization
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► Multi-Objective Design Challenge (1)

 Large Number of Degrees of Freedom / Multi-Dimensional Design Space 
 Full  Utilization of Design Space only Guaranteed by  Multi-Objective Optimization

■ Counteracting Effects of Key Design Parameters
■ Mutual Coupling of Performance Indices  Trade-Offs
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■ Specific Performance 
Profiles / Trade-Offs
Dependent on Application

► Multi-Objective Design Challenge (2)
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Multi-Objective
Optimization

Abstraction of Converter Design
Design Space / Performance Space
Pareto Front
Sensitivities / Trade-Offs
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 Mapping of “Design Space” into System “Performance Space”

Performance Space

Design Space

► Abstraction of Power Converter Design
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► Mathematical Modeling
of the Converter Design

 Multi-Objective Optimization  – Guarantees Best Utilization of All Degrees of Freedom (!)
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► Multi-Objective Optimization (1)

■ Ensures Optimal Mapping of the “Design Space” into the “Performance Space”
■ Identifies Absolute Performance Limits  Pareto Front / Surface

 Clarifies Sensitivity to Improvements of Technologies 
 Trade-off Analysis

/p k
rr

∆ ∆
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► Determination of the η-ρ-Pareto Front (a)

─ Core Geometry / Material
─ Single / Multiple Airgaps
─ Solid / Litz Wire, Foils
─ Winding Topology
─ Natural / Forced Conv. Cooling
─ Hard-/Soft-Switching
─ Si / SiC
─ etc.
─ etc.
─ etc.

─ Circuit Topology
─ Modulation Scheme
─ Switching Frequ.
─ etc.
─ etc.

■ System-Level Degrees of Freedom

■ Comp.-Level Degrees of Freedom of the Design

■ Only η -ρ -Pareto Front Allows Comprehensive
Comparison of Converter Concepts (!)
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■ Example:  Consider Only fP as  Design Parameter

fP =100kHz

“Pareto Front”

► Determination of the η-ρ-Pareto Front (b)

■ Only the Consideration of 
All Possible Designs / Degrees
of Freedom Clarifies the 
Absolute η-ρ-Performance 
Limit
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► Multi-Objective Optimization (2)

■ Design Space Diversity
■ Equal Performance for Largely Different Sets of Design Parameters

 E.g. Mutual Compensation  of  Volume and Loss Contributions (e.g. Cond. & Sw. Losses)
 Allows  Optimization for Further Performance Index (e.g. Costs)
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► Converter Performance Evaluation 
Based on η-ρ-σ-Pareto Surface

■ Definition of a Power Electronics “Technology Node”  (η*,ρ*,σ*,fP*)
■ Maximum σ [kW/$], Related Efficiency & Power Density 

►

 Specifying  Only a Single Performance Index is of No Value (!)
 Achievable Perform. Depends on Conv. Type / Specs (e.g. Volt. Range) / Side Cond. (e.g. Cooling)  



51/91

Case Study: 
Google Little Box Challenge

Introduction
Technical Specification
Little Box 1.0 
Little Box 2.0
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Case Study: 
Google Little Box Challenge

Introduction
Technical Specification
Little Box 1.0 
Little Box 2.0
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● Design / Build the 2kW 1-ΦSolar Inverter with the Highest Power Density in the World
● Power Density > 3kW/dm3 (> 50W/in3, multiply  kW/dm3 by Factor 16)
● Efficiency    > 95%
● Case Temp.  < 60°C
● EMI  FCC Part 15 B

■ Push the Forefront of New Technologies in R&D of High Power Density Inverters

!

!

!

!
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The Grand Prize

■ Timeline – Challenge Announced in Summer 2014
– 650 Teams Worldwide
– 100+ Teams Submitted a Technical Description until July 22, 2015
– 18 Finalists / Presentation @ NREL on Oct. 21, 2015, Golden, Colorado, USA
– Testing @ NREL /  Winner will be Announced in Early 2016

$1,000,000

● Highest Power Density (> 50W/in3)
● Highest Level of Innovation
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Finalists

- 5 Companies
- 6 Consultants
- 4 Universities

* and  FH IZM /
Fraza d.o.o.

Univ. of Tennessee (3)

Univ. of Illinois (12) 

Virginia Tech (1)
Rompower (7)

Schneider
Electric (2)

Tommasi
Bailly (8)

CE+T (9)

Energy 
Layer (5)

AHED (10)OKE Services (14)

Cambridge 
Active
Magnetics (15)

AMR (13)

Venderbosch (4)

Fraunhofer
IISB (11)

*
(6)

15 Teams/Participants in the Final @ NREL
Note: Numbering of Teams is Arbitrary.  .
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Little Box 1.0
Power Pulsation Buffer
Inverter Topology
GaN Power Stage
Multi Air Gap Inductor
Thermal Management
Performance of Prototype System
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► Power Pulsation Buffer 

● Parallel Buffer @ DC Input

● Series Buffer @ DC Input

■ Parallel Approach for Limiting Voltage Stress on Converter Stage Semiconductors
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■ C > 2.2mF / 166 cm3   Consumes 1/4 of Allowed Total Volume !

S0 = 2.0 kVA
cos Φ0 = 0.7
VC,max = 450 V
ΔVC/VC,max=3 %

● Electrolytic Capacitor

5 x 493μF/450 V
C = 2.46 mF

► Passive Power Pulsation Buffer
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● Large Voltage Fluctuation Foil or Ceramic Capacitor
● Buck- or Boost-Type DC/DC Interface Converter
● Buck-Type allows Utilizing 600V Technology

■ Significantly Lower Overall Volume Compared to Electrolytic Capacitor

108 x 1.2 μF /400 V
Ck ≈ 140 μF
VCk= 23.7cm3

CeraLink

► Full Active Power Pulsation Buffer (1)
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● Large Voltage Fluctuation Foil or Ceramic Capacitor
● Buck- or Boost-Type DC/DC Interface Converter
● Buck-Type allows Utilizing 600V Technology

■ Significantly Lower Overall Volume Compared to Electrolytic Capacitor

108 x 1.2 μF /400 V
Ck ≈ 140 μF
VCk= 23.7cm3

► Full Active Power Pulsation Buffer (2)
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EPCOS/TDK 
CeraLink 2µF, 600V

TDK Class II 
X6S MLCC 2.2µF, 450V

■ PPB Design Optimiz. Requires Large-Signal Capacitance and Power Loss Data in All Operating Points

►

►

● Variation ofDC Bias and 
Superimposed AC Voltage
@ 60°C Operating Temp.

Designed Op. Point

► CeraLink vs. Class II MLCC (X6S) Large-Signal Analysis
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● Analysis for Google Little Box Challenge Specification ΔV/V < 3%  
● Efficiency Benefit of PPB only for ρ > 9kW/dm3

■ Electrolytics Favorable for High Efficiency @ Moderate Power Density (Δη= +0.5%)
■ Electrolytics Show Lower Vol. & Lower Losses if Large ΔV/V is Acceptable (e.g. for PFC Rectifiers)

► Power Pulsation Buffer (PPB) vs. Electrolytic Capacitor
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● Symmetric PWM Operation of Both Bridge Legs
● No Low-Frequency CM Output Voltage Component

■ DM Component of  u1 and u2 Defines Output uO
■ CM Component of  u1 and u2 Represents Degree of Freedom of the Modulation (!)

► Symmetric PWM Full-Bridge AC/DC Conv. Topology
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● Interleaving of 2 Bridge Legs per Phase  - Volume / Filtering / Efficiency Optimum
● Interleaving in Space & Time – Within Output Period
● Alternate Operation of Bridge Legs @ Low Power
● Overlapping Operation @ High Power

■ Opt. Trade-Off of Conduction & Switching Losses  / Opt. Distribution of Losses

► 4D - Interleaving
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● 600V IFX Normally-Off GaN GIT  - ThinPAK8x8
● 2 Parallel Transistors / Switch
● Antiparallel CREE SiC Schottky Diodes

■ CeraLink Capacitors for DC Voltage Buffering

- 1.2V typ. Gate Threshold Voltage
- 55 mΩ RDS,on @ 25°C,  120mΩ @ 150°C 
- 5Ω Internal Gate Resistance

► Selected Power Semiconductors
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■ Dimensions  - 14.5 x 14.5 x 22mm3

- L= 10.5μH
- 2 x 8 Turns
- 24 x 80μm Airgaps 
- Core Material DMR 51 / Hengdian
- 0.61mm Thick Stacked Plates
- 20 μm Copper Foil / 4 in Parallel
- 7 μm Kapton Layer Isolation
- 20mΩ Winding Resistance / Q≈600
- Terminals in No-Leakage Flux Area

● Multi-Airgap Inductor with Multi-Layer Foil Winding Arrangement Minim. Prox. Effect
● Very High Filling Factor / Low High Frequency Losses
● Magnetically Shielded Construction Minimizing EMI
● Intellectual Property of F. Zajc / Fraza

► High Frequency Multi Air Gap Inductor
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► Composite Core - Temperature Rise Recording
■ Temperature Rise Comparison of Solid Core and MAG Sample
• Sinusoidal Excitation 100 mT / 400 kHz
• Solid 3F4 (1 x 21.6 mm) vs. MAG  3F4 (7 x 3mm)
• ΔT = 10 °C, T0 = 26.3 °C

▲ Surface Loss Test Setup W/ Res. Cap. Bank
and Infrared Camera

HD Infrared 
Camera

Qvar Comp.

Ferrite 
Sample
(DUT)

▲ 3F4 Solid Sample Temperature Rise 

▲ 3F4 MAG Sample (7 x 3mm) Temperature Rise 
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● Filter Structure with Internal CM Capacitor Feedback 
● Filtering to DC- (and optional to DC+)

■ No Limitation of CM Capacitor C1 Due to Earth Current Limit µF Instead of nF Can be Employed
■ Allows Downsizing of CM Inductor and/or Total Filter Volume  

► EMI Filter (1)

Test Receiver
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● System Employing Electrolytic Capacitors as 1-Φ Power Pulsation Buffer

dBµV
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        ■ Compliant to All Specifications

► EMI Filter (2)
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■ ZVS of All Bridge Legs @ Turn-On/Turn-Off in Whole Operating Range (4D-TCM-Interleaving) 
■ Heatsinks Connected to DC Bus / Shield to Prevent Cap. Coupling to Grounded Enclosure

● Interleaving of 2 Bridge Legs per Phase   
● Active DC-Side Buck-Type Power Pulsation Buffer
● 2-Stage EMI AC Output Filter (1)  Heat Sink

(2)  EMI Filter
(3)  Power Pulsation Buffer 
(4)  Enclosure

S

► Complete Little Box 1.0 Converter Topology
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● Overall Cooling Performance Defined by Selected Fan Type and Heatsink

– Axial Fan– Radial
Blower

– Square 
Cross Section

of Heatsink for 
Using a Fan

– Flat and
Wide 

Heatsink 
for Blower

■ Optimal Fan and Heat Sink Configuration Defined by Total Cooling System Length
■ Cooling Concept with Blower Selected Higher CSPI for Larger Mounting Surface 

► Thermal Management Building Blocks 
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● 30mm Blowers with Axial Air Intake / Radial Outlet
● Full Optimization of the Heatsink Parameters

- 200um  Fin Thickness 
- 500um  Fin Spacing  
- 3mm Fin Height 
- 10mm Fin Length
- CSPI = 37 W/(dm3.K) 
- 1.5mm Baseplate

■ CSPIeff= 25 W/(dm3.K) Considering Heat Distribution Elements
■ Two-Side Cooling  Heatsink Temperature = 52°C @ 80W (8W by Natural Convection)

► Final Thermal Management Concept



75/91

● System Employing Active 1-Φ Power Pulsation Buffer  

- 8.2 kW/dm3

- 8.9cm x 8.8cm x 3.1cm
- 96,3%  Efficiency @ 2kW
- Tc=52°C @ 2kW

- ΔuDC=  1.1%
- ΔiDC= 2.8%
- THD+NU = 2.6%
- THD+NI = 1.9%

135 W/in3

■ Compliant to All Original Specifications (!)

- No Low-Frequ. CM Output Voltage Component
- No Overstressing of Components
- All  Own IP / Patents

► Little Box 1.0 – Prototype (1)
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● System Employing Active 1-Φ Power Pulsation Buffer  

- 8.2 kW/dm3

- 8.9cm x 8.8cm x 3.1cm
- 96,3%  Efficiency @ 2kW
- Tc=52°C @ 2kW

- ΔuDC=  1.1%
- ΔiDC= 2.8%
- THD+NU = 2.6%
- THD+NI = 1.9%

■ Compliant to All Original Specifications (!)

- No Low-Frequ. CM Output Voltage Component
- No Overstressing of Components
- All  Own IP / Patents

135 W/in3

► Little Box 1.0 – Prototype (2)
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● System Employing Active 1-Φ Power Pulsation Buffer  

- 8.2 kW/dm3

- 8.9cm x 8.8cm x 3.1cm
- 96,3%  Efficiency @ 2kW
- Tc=52°C @ 2kW

- ΔuDC=  1.1%
- ΔiDC= 2.8%
- THD+NU = 2.6%
- THD+NI = 1.9%

■ Compliant to All Original Specifications (!)

- No Low-Frequ. CM Output Voltage Component
- No Overstressing of Components
- All  Own IP / Patents

► Little Box 1.0 – Prototype (3)
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■ Compliant to All Specifications

Output Current  (10 A/div)
Inductor Current  Bridge Leg 1-1  (10A/div)
Inductor Current  Bridge Leg 1-2  (10A/div)

DC Link Voltage (AC-Coupl., 2V/div)
Buffer Cap. Voltage  (20 V/div)
Buffer Cap. Current  (10 A/div)

Output Voltage  (200V/div)

- Ohmic Load / 2kW

62/124

● System Employing Active Ceralink 1-Φ Power Pulsation Buffer  

► Little Box 1.0 – Measurement Results
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■ Large Heatsink (incl. Heat Conduction Layers)
■ Large Losses in Power Fluctuation Buffer Capacitor (!)
■ TCM Causes Relatively High Conduction & Switching Losses @ Low Power
■ Relatively Low Switching Frequency @ High Power – Determines EMI Filter Volume 

● Volume Distribution (240cm3) ● Loss Distribution (75W)

► Little Box 1.0 – Volume & Loss Distribution
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Little Box 2.0
DC/│AC│Converter + Unfolder
PWM vs. TCM incl. Interleaving
ηρ-Pareto Limits for Non-Ideal Switches
Preliminary Exp. Results 

250 W/in3
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● Alternative Converter Topology - DC/│AC│- Buck Converter + Unfolder
● 60Hz-Unfolder (Temporary PWM for Ensuring Continuous Current Control)
● TCM  or PWM of  DC/│AC│- Buck-Converter 

■ Full Optimization of All Converter Options for Real Switches / X6S Power Pulsation Buffer

► Little Box 2.0 – New Converter Topology
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■ vC0 Easy to Generate/Control
■ Higher Conduction Losses Due to FB-Unfolder
■ Lower CM-Noise (DC & n x 120Hz-Comp.)
■ CCM=700nF Allowed for 50mA

■ vAC1 More Difficult to Generate/Control
■ Lower Conduction Losses
■ Higher CM-Noise (DC and n x 120Hz-Comp.)
■ CCM=150nF Allowed for 50mA

● Alternative Converter Topology  Only Single HF Bridge Leg + 60Hz-Unfolder
● DC/│AC│- Buck Converter + Full-Bridge Unfolder  OR HF Half-Bridge & Half-Bridge Unfolder

► Little Box 1.0 – New Converter Topology (2)
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● Very High Sw. Frequency fS of TCM Around Current Zero Crossings  
● Efficiency Reduction due to Residual TCM Sw. Losses & Gate Drive Losses Reduction
● Wide fS -Variation Represents Adv. & Disadvantage for EMI Filter Design

■ PWM -- Const. Sw. Frequency & Lower Conduction Losses
■ PWM @ Large Current Rippel -- ZVS in Wide Intervals

(s)      Soft-Switching (ZVS) 
(p-h)  Partial Hard Switching 
(h) Hard-Switching

► TCM Vs. PWM W/ Large Current Ripple
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● DC/│AC│- Buck Converter + Unfolder & PWM Shows Best Performance
● Full-Bridge Employs 2 Switching Bridge Legs - Larger Volume & Losses
● Interleaving Not Advantageous – Lower Heatsink Vol. but Larger Total Vol. of Switches and Inductors 

■ ρ= 250W/in3 (15kW/dm3) @ η= 98% Efficiency Achievable for Full Optimization  




► Little Box – Multi-Objective Optimization
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● System Employing Active 1-Φ Power Pulsation Buffer  

- 14.8 kW/dm3

- 6.0 cm x 5.0 cm x 4.5 cm = 135 cm3

- 97.8 %  Efficiency @ 2kW

■ Compliant to Revised Specifications (!)

- Compliant to 50 mA Ground Current Lim.
- No Overstressing of Components
- All  Own IP / Patents

243 W/in3

► Little Box 2.0 – Prototype
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► Little Box 2.0 – Power Density Benchmark

x 5.3

x 2.7

x 1.8
■ x 25.6 Increase in Power Density

Compared To Leading Industry 

http://littleboxchallengecetpower.com/#effy
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Conclusions
Summary
Future Power Electronics Development 
“Stairway to Heaven”
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► Summary

■ Megatrends – Renewable Energy / Energy Saving / E-Mobility / “SMART XXX”
Demand Increasing Performance at Lower Cost

■ Large Number of Degrees of Freedom – Materials / Components / Topology / Control

■ Multi-Objective Optimization Allows To Identify Best Designs For Given Specs. and Side 
Conditions

■ ETH Among Top 10 Finalists in the GLBC – Comp. To Realize the World Smallest 2 kW PV Inverter

■ Little Box 1.0 x 14 Increase of Power Density Comp. to Industry Standard

■ Further Improved Little Box 2.0 x 25 Increase of Power Density
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► Future Development 

 More Application Specific Solutions
 Mature Technology   – Cost Optimization @ Given Performance Level
 Design / Optimize / Verify (All in Simulation) - Faster / Cheaper / Better

■ Megatrends – Renewable Energy / Energy Saving / E-Mobility / “SMART XXX”
■ Power Electronics  will Massively Spread in Applications
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Power MOSFETs & IGBTs
Microelectronics

Circuit Topologies
Modulation Concepts

Control Concepts

Super-Junct. Techn. / WBG
Digital Power

Modeling &  Simulation

2028
2018

►
►

►
►

SCRs / Diodes 
Solid-State Devices

► Extrapolation of Technology S-Curve

“Passives”
Adv. Packaging

η-ρ-σ-Design of Converters & “Systems”
Interdisciplinarity

Paradigm
Shift

■

■ “Stairway to Heaven”

!
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Thank You !
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