

A Sustainable Future Enabled By Power Electronics

Dominik Neumayr, J. W. Kolar

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory neumayr@lem.ee.ethz.ch / www.pes.ee.ethz.ch

Outline

- Power Electronics 101
- Global Megatrends
- Resulting Requirements for Power Electronics
 Multi-Objective Optimization Approach
 Google Little Box Challenge

- Ultra Compact GaN Based Power Conversion
- Conclusion

Basic Structure of Electronic Power Processing Systems

—— Power Electronic Systems ——

Power Electronics 101

Basic Principle Step-Down DC/DC Conversion

Power Semiconductors Circuits Control Engineering Electronics Drives/El. Machines

Simulation

Sensors/Signal Electronics Electromagnetic Systems Energy Systems

EMC

Power Electronics 101

Electronic Power Processing

Power Electronics 101

Electronic Power Processing

Highest Efficiency Highest Compactness Highest Dynamics Highest Compatibility Highest Reliability

Power Electronics Applications

 Industry Automation / Processes
 Communication & Information Transportation Lighting modern traction systems Subways etc., etc. Automotives ships hybrid electric vehicles 8 Traction e fork-lifts electric power steering Rolling mills vacuum cleaners elevators UPS Our Daily pumps Industries computer | Life cement mills construction air-conditioning Application of machinery Power Electronics wind system smart grids 6 Utility Renewable FACTS System Energy HVDC transmission solar system Defense satellites Everywhere ! ጲ space shuttles 🛑 Aerospace Source: https://www.electrical4u.com/application-ofpower-electronics/ aircraft 🔵 Energy **ETH** zürich Science

Center

Global Megatrends

Climate Change Digitalization Sustainable Mobility Urbanization Alleviate Poverty Etc.

Global Megatrends

Climate Change _____ Digitalization Sustainable Mobility Urbanization Alleviate Poverty

Climate Change

Reduce CO₂ Emissions Intensity (CO₂/GDP) to Stabilize Atmospheric CO₂ Concentration
 1/3 in 2050 → less than 1/10 in 2100 (AIST, Japan @ IEA Workshop 2007)

Climate Change

- **CO**₂ **Concentration & Temperature Development** Evidence from Ice Cores

Source: H. Nilsson Chairman IEA DSM Program

Reduce CO₂ Emissions Intensity (CO₂/GDP) to Stabilize Atmospheric CO₂ Concentration
 1/3 in 2050 → less than 1/10 in 2100 (AIST, Japan @ IEA Workshop 2007)

→ Utilize Renewable Energy (1)

- Enabled by Power Electronics
- Higher Reliability (!)
- Lower Costs

Source: M. Prahm / Flickr

Medium-Voltage Power Collection and Connection to On-Shore Grid

Enabled by Power Electronics

- Extreme Cost Pressure (!)
- Higher EfficiencyHigher Power Density

Photovoltaics Power Plants

- Up to Several MW Power Level Future Hybrid PV/Therm. Collectors

Source: www.r-e-a.net

Global Megatrends

Climate Change Digitalization Sustainable Mobility Urbanization Alleviate Poverty

≻

15/91 —

Digitalization

- Internet of Things (IoT) / Cognitive Computing
- Ubiquitous Computing / BIG DATA
- Blockchain Tech. / DApps.
 Fully Automated Manufacturing / Industry 4.0
- Autonomous Cars
- Etc.

ETH zürich

 Moving form Hub-Based to Community Concept Increases Potential Network Value Proportional to n²)

Metcalfe's Law

Enabled by Power Electronics

- Ranging from Medium Voltage to Power-Supplies-on-Chip
- Short Power Supply Innovation Cycles
 Modularity / Scalability
- Higher Power Density (!)
 Higher Efficiency (!)
 Lower Costs

Source: REUTERS/Sigtryggur Ari

60 Watts

Server-Farms

up to 450 MW 99.9999%/<30s/a

Enabled by Power Electronics

- Ranging from Medium Voltage to Power-Supplies-on-Chip
- Short Power Supply Innovation Cycles
- Modularity / Scalability
- Higher Power Density (!)

Power Density Increased by

Factor 2 over 10 Years

- Higher Efficiency (!)
- Lower Costs

18/91 —

→ Fully Automated Manufacturing – Industry 4.0

Enabled by Power Electronics

- Lower Costs (!)Higher Power Density
- Self-Sensing etc.

Source:

TESLA MOTORS

→ Fully Automated Raw Material Extraction

- **Enabled by Power Electronics**
- High Reliability (!) High Power Density (!)

Source: matrixengineered.com

ABB's Future Subsea Power Grid \rightarrow "Develop All Elements for a Subsea Factory"

Global Megatrends

Climate Change Digitalization Sustainable Mobility Urbanization Alleviate Poverty

Sustainable Mobility

- EU Mandatory 2020 CO₂ Emission Targets for New Cars
- 147g CO₂/km for Light-Commercial Vehicles
 95g CO₂/km for Passenger Cars
 100% Compliance in 2021

\rightarrow Electric Vehicles

Enabled by Power Electronics - Drivetrain / Aux. / Charger

- Higher Power Density

— Extreme Cost Pressure (!)

Faraday Future

FF-ZERO1 750kW / 322km/h 1 Motor per Wheel 300+ Miles Range Lithium-Ion Batteries along the Floor

Enabled by Power Electronics

- Hyperloop
- San Francisco \rightarrow Los Angeles in 35min

POD COMPETITION www.spacex.com/hyperloop

Low Pressure Tube
 Magnetic Levitation
 Linear Ind. Motor
 Air Compressor in Nose

Enabled by Power Electronics

- Cut Emissions Until 2050 ____
 - * **CO**₂ by 75%,

 - * NO^{*}_x by 90%, * Noise Level by 65%

Future Hybrid Distributed Propulsion Aircraft

- **Eff.** Optim. Gas Turbine 1000Wh/kg Batteries **Distrib.** Fans (E-Thrust)
- **Supercond.** Motors Med. Volt. Power Distrib.

Enabled by Power Electronics

Global Megatrends

Climate Change Digitalization Sustainable Mobility Urbanization Alleviate Poverty Etc.

Urbanization

- 60% of World Population Exp. to Live in Urban Cities by 2025
- **30 MEGA Cities Globally by 2023**

▶ Selected Current & Future MEGA Cities $2015 \rightarrow 2030$

Enabled by Power Electronics

- Masdar = "Source"
- Fully Sustainable Energy Generation
 * Zero CO₂
 * Zero Waste

- EV Transport / IPT Charging
 to be finished 2025

Enabled by Power Electronics

- Masdar = "Source"
- Fully Sustainable Energy Generation * Zero CO₂ * Zero Waste

- EV Transport / IPT Charging
 to be finished 2025

Global Megatrends

Climate Change Digitalization Sustainable Mobility Urbanization Alleviate Poverty Etc.

Alleviate Poverty

- 2 Billion People are Lacking Access to Clean Energy
- Rural Electrification in the Developing World

Urgent Need for Village-Scale Solar DC Microgrids etc.
 2 US\$ for 2 LED Lights + Mobile-Phone Charging / Household / Month (!)

Source: whiskeybehavior.info

Current / New Application Areas (1)

- Power Electronics Covers an Extremely Wide Power / Voltage / Frequency Range
- **Extensions for** *SMART xxx* / Mobility Trends / Availability Requirements

Future Extensions of Power Electronics Application Areas

Current / New Application Areas (2)

- **Commoditization / Standardization for High Volume Applications**
- Extension to Microelectronics-Technology (Power Supply on Chip)
- **Extensions to MV/MF**

- Cost Pressure as Common Denominator of All Applications (!)
- Key Importance of Technology Partnerships of Academia & Industry

36/91 -

Power Converter Design Challenges

Mutual Coupling of Performances

Required Power Electronics Performance Improvements

ETH zürich

Multi-Objective Design Challenge (1)

- Counteracting Effects of Key Design Parameters
- Mutual Coupling of Performance Indices → Trade-Offs

- → Large Number of Degrees of Freedom / Multi-Dimensional Design Space
- \rightarrow Full Utilization of Design Space only Guaranteed by Multi-Objective Optimization

Multi-Objective Design Challenge (1)

- Counteracting Effects of Key Design Parameters Mutual Coupling of Performance Indices \rightarrow Trade-Offs

- → Large Number of Degrees of Freedom / Multi-Dimensional Design Space
 → Full Utilization of Design Space only Guaranteed by Multi-Objective Optimization

Multi-Objective Design Challenge (2)

Multi-Objective Optimization

Abstraction of Converter Design Design Space / Performance Space Pareto Front Sensitivities / Trade-Offs

Abstraction of Power Converter Design

→ *Mapping* of "*Design Space*" into System "*Performance Space*"

→ Multi-Objective Optimization - Guarantees Best Utilization of All Degrees of Freedom (!)

44/91 —

Multi-Objective Optimization (1)

- Ensures Optimal Mapping of the "Design Space" into the "Performance Space" Identifies Absolute Performance Limits \rightarrow Pareto Front / Surface

\rightarrow Clarifies Sensitivity $\Delta p / \Delta k$ to Improvements of Technologies \rightarrow Trade-off Analysis

Determination of the η - ρ -Pareto Front (a)

- **Comp.-Level Degrees of Freedom of the Design**
- Core Geometry / Material
 Single / Multiple Airgaps
 Solid / Litz Wire, Foils
 Winding Topology
 Natural / Forced Conv. Cooling

- Hard-/Soft-Switching
- Si / SíC
- etc. — etc.
- etc.
- System-Level Degrees of Freedom
- Circuit Topology
 Modulation Scheme
- Switching Frequ.
- etc.
- etc.

ETH zürich

Only η-ρ-Pareto Front Allows Comprehensive Comparison of Converter Concepts (!)

Determination of the η-ρ-Pareto Front (b)

Example: Consider Only f_P as Design Parameter

Multi-Objective Optimization (2)

- Design Space Diversity
- **Equal Performance for Largely Different Sets of Design Parameters**

Design Space

ETH zürich

Performance Space

→ E.g. Mutual Compensation of Volume and Loss Contributions (e.g. Cond. & Sw. Losses)
 → Allows Optimization for Further Performance Index (e.g. Costs)

Converter Performance Evaluation Based on $\eta - \rho - \sigma$ -Pareto Surface

- Definition of a Power Electronics "Technology Node" $\rightarrow (\eta^*, \rho^*, \sigma^*, f_P^*)$ Maximum σ [kW/\$], Related Efficiency & Power Density

- \rightarrow Specifying Only a Single Performance Index is of No Value (!)
- → Achievable Perform. Depends on Conv. Type / Specs (e.g. Volt. Range) / Side Cond. (e.g. Cooling)

Case Study: Google Little Box Challenge

Introduction Technical Specification Little Box 1.0 Little Box 2.0

Google | IEEE

- Design / Build the 2kW 1-OSolar Inverter with the Highest Power Density in the World
- Power Density > 3kW/dm³ (> 50W/in³, multiply kW/dm³ by Factor 16)
- Efficiency > 95%
- Case Temp. < 60°C
- EMI FCC Part 15 B

Push the Forefront of New Technologies in R&D of High Power Density Inverters

- Highest Power Density (> 50W/in³)
 Highest Level of Innovation

\$1,000,000

■ Timeline

ETH zürich

- Challenge Announced in Summer 2014
 - 650 Teams Worldwide
 - 100+ Teams Submitted a Technical Description until July 22, 2015
 - 18 Finalists / Presentation @ NREL on Oct. 21, 2015, Golden, Colorado, USA
 Testing @ NREL / Winner will be Announced in Early 2016

Power Electronic Systems Laboratory — 56/91 —

Little Box 1.0

Power Pulsation Buffer Inverter Topology GaN Power Stage Multi Air Gap Inductor Thermal Management Performance of Prototype System

Power Pulsation Buffer

• Parallel Buffer @ DC Input

• Series Buffer @ DC Input

Parallel Approach for Limiting Voltage Stress on Converter Stage Semiconductors

ETH zürich

Passive Power Pulsation Buffer

• Electrolytic Capacitor

C > 2.2mF / 166 cm³ \rightarrow Consumes 1/4 of Allowed Total Volume !

Full Active Power Pulsation Buffer (1)

- Large Voltage Fluctuation Foil or Ceramic Capacitor Buck- or Boost-Type DC/DC Interface Converter Buck-Type allows Utilizing 600V Technology
- •
- •

Significantly Lower Overall Volume Compared to Electrolytic Capacitor

Full Active Power Pulsation Buffer (2)

- Large Voltage Fluctuation Foil or Ceramic Capacitor Buck- or Boost-Type DC/DC Interface Converter Buck-Type allows Utilizing 600V Technology
- ۲
- •

Significantly Lower Overall Volume Compared to Electrolytic Capacitor

CeraLink vs. Class II MLCC (X6S) Large-Signal Analysis

PPB Design Optimiz. Requires Large-Signal Capacitance and Power Loss Data in All Operating Points

Power Pulsation Buffer (PPB) vs. Electrolytic Capacitor

- Analysis for Google Little Box Challenge Specification ΔV/V < 3%
 Efficiency Benefit of PPB only for ρ > 9kW/dm³

- **Electrolytics Favorable for High Efficiency** @ Moderate Power Density ($\Delta \eta$ = +0.5%)
- Electrolytics Show Lower Vol. & Lower Losses if Large △V/V is Acceptable (e.g. for PFC Rectifiers)

Symmetric PWM Full-Bridge AC/DC Conv. Topology

- Symmetric PWM Operation of Both Bridge Legs
- No Low-Frequency CM Output Voltage Component

- DM Component of u_1 and u_2 Defines Output u_0 CM Component of u_1 and u_2 Represents Degree of Freedom of the Modulation (!)

4D - Interleaving

- Interleaving of 2 Bridge Legs per Phase Volume / Filtering / Efficiency Optimum
- Interleaving in Space & Time Within Output Period
 Alternate Operation of Bridge Legs @ Low Power
- Overlapping Operation @ High Power

Selected Power Semiconductors

- 600V IFX Normally-Off GaN GIT ThinPAK8x8
- 2 Parallel Transistors / Switch
- Antiparallel CREE SiC Schottky Diodes
- 1.2V typ. Gate Threshold Voltage 55 m Ω $R_{DS,on}$ @ 25°C, 120m Ω @ 150°C 5 Ω Internal Gate Resistance

Energy

Science Center

High Frequency Multi Air Gap Inductor

- Multi-Airgap Inductor with Multi-Layer Foil Winding Arrangement Minim. Prox. Effect
- Very High Filling Factor / Low High Frequency Losses Magnetically Shielded Construction Minimizing EMI
- Intellectual Property of F. Zajc / Fraza ۲
- L= 10.5µH
- 2 x 8 Turns
- 24 x 80µm Airgaps
 Core Material DMR 51 / Hengdian
 0.61mm Thick Stacked Plates

- 20 μm Copper Foil / 4 in Parallel
 7 μm Kapton Layer Isolation
 20mΩ Winding Resistance / Q≈600
 Terminals in No-Leakage Flux Area

Dimensions - 14.5 x 14.5 x 22mm³

Composite Core - Temperature Rise Recording

Temperature Rise Comparison of Solid Core and MAG Sample

- Sinusoidal Excitation 100 mT / 400 kHz
- Solid 3F4 (1 x 21.6 mm) vs. MAG 3F4 (7 x 3mm)
- $\Delta T = 10 \,^{\circ}\text{C}, T_0 = 26.3 \,^{\circ}\text{C}$

▲ Surface Loss Test Setup W/ Res. Cap. Bank and Infrared Camera

ETH zürich

▲ 3F4 Solid Sample Temperature Rise

▲ 3F4 MAG Sample (7 x 3mm) Temperature Rise

EMI Filter (1)

- Filter Structure with Internal CM Capacitor Feedback •
- Filtering to DC- (and optional to DC+)

- No Limitation of CM Capacitor C_1 Due to Earth Current Limit $\rightarrow \mu$ F Instead of nF Can be Employed Allows Downsizing of CM Inductor and/or Total Filter Volume

► EMI Filter (2)

• System Employing Electrolytic Capacitors as 1- Φ Power Pulsation Buffer

• Compliant to All Specifications

Complete Little Box 1.0 Converter Topology

- Interleaving of 2 Bridge Legs per Phase
- Active DC-Side Buck-Type Power Pulsation Buffer
- 2-Stage EMI AC Output Filter

ZVS of All Bridge Legs @ Turn-On/Turn-Off in Whole Operating Range (4D-TCM-Interleaving)
 Heatsinks Connected to DC Bus / Shield to Prevent Cap. Coupling to Grounded Enclosure

Heat Sink

Thermal Management Building Blocks

• Overall Cooling Performance Defined by Selected Fan Type and Heatsink

- Optimal Fan and Heat Sink Configuration Defined by Total Cooling System Length
 Cooling Concept with Blower Selected → Higher CSPI for Larger Mounting Surface

Final Thermal Management Concept

- 30mm Blowers with Axial Air Intake / Radial Outlet
- Full Optimization of the Heatsink Parameters •
- 200um Fin Thickness
- 500um Fin Spacing
- 3mm Fin Height 10mm Fin Length
- CSPI = 37 W/(dm³.K) 1.5mm Baseplate

- CSPI_{eff}= 25 W/(dm³.K) Considering Heat Distribution Elements
 Two-Side Cooling → Heatsink Temperature = 52°C @ 80W (8W by Natural Convection)

Little Box 1.0 – Prototype (1)

System Employing Active 1-⁽¹⁾ Power Pulsation Buffer

- 8.2 kW/dm³ - 8.9cm x 8.8cm x 3.1cm
- 96,3% Efficiency @ 2kW
- T_c=52°C @ 2kW

- $-\Delta u_{\rm DC} = 1.1\%$ $-\Delta i_{\rm DC} = 2.8\%$ $-THD+N_U = 2.6\%$ $-THD+N_I = 1.9\%$
- Compliant to All Original Specifications (!)
- No Low-Frequ. CM Output Voltage Component
- No Overstressing of Components
- All Own IP / Patents

Little Box 1.0 – Prototype (2)

System Employing Active 1-D Power Pulsation Buffer

- 8.2 kW/dm³ - 8.9cm x 8.8cm x 3.1cm
- 96,3% Efficiency @ 2kW
- T_c=52°C @ 2kW

- $-\Delta u_{\rm DC} = 1.1\%$ $-\Delta i_{\rm DC} = 2.8\%$ $-THD+N_U = 2.6\%$ $-THD+N_I = 1.9\%$
- Compliant to All Original Specifications (!)
- No Low-Frequ. CM Output Voltage Component
- No Overstressing of Components
- All Own IP / Patents

ETH zürich

Little Box 1.0 – Prototype (3)

- 8.2 kW/dm³ - 8.9cm x 8.8cm x 3.1cm - 96,3% Efficiency @ 2kW - T_c=52°C @ 2kW

- $-\Delta u_{\rm DC} = 1.1\%$ $-\Delta i_{\rm DC} = 2.8\%$ $-THD+N_U = 2.6\%$ $-THD+N_I = 1.9\%$
- Compliant to All Original Specifications (!)
- No Low-Frequ. CM Output Voltage Component
- No Overstressing of Components
- All Own IP / Patents

Little Box 1.0 – Measurement Results

- System Employing Active Ceralink 1- Φ Power Pulsation Buffer
- Ohmic Load / 2kW

Compliant to All Specifications

ETH zürich

Little Box 1.0 – Volume & Loss Distribution

Volume Distribution (240cm³)

Loss Distribution (75W)

- Large Heatsink (incl. Heat Conduction Layers)

- Large Losses in Power Fluctuation Buffer Capacitor (!)
 TCM Causes Relatively High Conduction & Switching Losses @ Low Power
 Relatively Low Switching Frequency @ High Power Determines EMI Filter Volume

46.3W

Output Filter

Electronics

Little Box 2.0

DC/ AC Converter + Unfolder PWM vs. TCM incl. Interleaving ηρ-Pareto Limits for Non-Ideal Switches Preliminary Exp. Results

ETH zürich

Little Box 2.0 – New Converter Topology

- Alternative Converter Topology DC/ AC Buck Converter + Unfolder 60Hz-Unfolder (Temporary PWM for Ensuring Continuous Current Control) TCM or PWM of DC/ AC Buck-Converter

Full Optimization of All Converter Options for Real Switches / X6S Power Pulsation Buffer

Little Box 1.0 – New Converter Topology (2)

- Alternative Converter Topology \rightarrow Only Single HF Bridge Leg + 60Hz-Unfolder
- DC/ AC Buck Converter + Full-Bridge Unfolder OR HF Half-Bridge & Half-Bridge Unfolder

- *v*_{co} Easy to Generate/Control
 Higher Conduction Losses Due to FB-Unfolder
- Lower CM-Noise (DC & n x 120Hz-Comp.)
- C_{CM}=700nF Allowed for 50mA

- *v*_{AC1} More Difficult to Generate/Control
 Lower Conduction Losses
- Higher CM-Noise (DC and n x 120Hz-Comp.)
- C_{CM}=150nF Allowed for 50mA

► TCM Vs. PWM W/ Large Current Ripple

- Very High Sw. Frequency *f*_s of TCM Around Current Zero Crossings
- Efficiency Reduction due to Residual TCM Sw. Losses & Gate Drive Losses Reduction
- Wide *f_s* -Variation Represents Adv. & Disadvantage for EMI Filter Design

PWM -- Const. Sw. Frequency & Lower Conduction Losses
 PWM @ Large Current Rippel -- ZVS in Wide Intervals

ETH zürich

Little Box – Multi-Objective Optimization

- DC/ AC Buck Converter + Unfolder & PWM Shows Best Performance Full-Bridge Employs 2 Switching Bridge Legs Larger Volume & Losses Interleaving Not Advantageous Lower Heatsink Vol. but Larger Total Vol. of Switches and Inductors

• ρ = 250W/in³ (15kW/dm³) @ η = 98% Efficiency Achievable for Full Optimization

Little Box 2.0 – Prototype

- System Employing Active 1- Φ Power Pulsation Buffer
- 14.8 kW/dm³ 6.0 cm x 5.0 cm x 4.5 cm = 135 cm³
- 97.8 % Efficiency @ 2kW

- Compliant to Revised Specifications (!)
- Compliant to 50 mA Ground Current Lim.
- No Overstressing of Components
- All Own IP / Patents

Little Box 2.0 – Power Density Benchmark

86/91 —

Conclusions

Summary Future Power Electronics Development "Stairway to Heaven"

Summary

- Megatrends Renewable Energy / Energy Saving / E-Mobility / "SMART XXX" Demand Increasing Performance at Lower Cost
- Large Number of Degrees of Freedom Materials / Components / Topology / Control
- Multi-Objective Optimization Allows To Identify Best Designs For Given Specs. and Side Conditions
- **ETH** Among Top 10 Finalists in the GLBC Comp. To Realize the World Smallest 2 kW PV Inverter
- Little Box 1.0 x 14 Increase of Power Density Comp. to Industry Standard
- **•** Further Improved Little Box 2.0 x 25 Increase of Power Density

Future Development

- Megatrends Renewable Energy / Energy Saving / E-Mobility / "SMART XXX" Power Electronics will Massively Spread in Applications

- → More Application Specific Solutions
- → Mature Technology Cost Optimization @ Given Performance Level
- Design / Optimize / Verify (All in Simulation) Faster / Cheaper / Better \rightarrow

90/91 —

Center

Thank You !

