

How to switch off high voltage DC current without using semiconductors

Frontiers in Energy Research – 24. April 2018 Lorenz Bort

Content

- Introduction into HVDC
- How to switch off high voltage AC & DC
- Passive oscillation scheme for DC switching
- Arc characterization
- Results: axial voltage distribution

What is high voltage DC transmission?

- > 100'000 Volt (up to +/- 800kV)
- > 1'000A nominal current (up to 5kA)
- 100 MW to 8 GW transmission capacity
- (typical load of switzerland: 8GW)

[technologyreview.com]

High Voltage DC Links offer advantages over High Voltage AC

- 1. Power flow control
- 2. Lower losses over >1000km Overhead lines (and >50km cable)
- 3. Possibility to connect un-synchronized networks, even different frequencies.

Since the 1960s HVDC links are used where they are useful

- Itaipu \rightarrow unsynchronized network, long distance (780 km)
- China \rightarrow many of them, most long distance (>2000km)
- Europe/Russia/North (NOR/DEN/SWE/UK...?) unsynchronized & subsea
- DE/CZ back to back coupling

Itaipu – São Paulo is similar to Helgoland – Switzerland

- Large generation capacity (several GW)
- Loads far away (>500km)
- HVDC helps control power flow and lower the losses

[Wolframalpha.com]

Itaipu (Paraguay/Brazil)

- 700 *MW* each generator
- $700m^{3}/s$ each turbine
- 9x @ 60Hz (BRA)
- 9x @ 50Hz (PAR)

Itaipu Powerplant Numbers (Paraguay/Brazil)

- Limmat (Zürisee):
- Rheinfall:
- I Penstock Itaipu:
- Rhein (Basel):
- Iguaçu falls:

70 m13 /s 600 m13 /s 700 m13 /s 1000 m13 /s 1500 m13 /s

- At Itaipu, there are 18 penstocks, 700MW each, 100m head, 90 TWh / year
- HVDC: 2 systems, each +/-600kV, 2x3GW from Paraguay side to São Paulo

HVDC also has drawbacks compared with HVAC

- Transformers are not working with DC
- Converter Stations are huge, expensive and lossy
- Meshed Grids require breakers, which are huge, expensive and lossy

HVDC also has drawbacks compared with HVAC

[alibaba.com]

Transformers: 1M\$?

[Wikimedia.org]

AC/DC converter: 100M\$?

HVDC also has drawbacks compared with HVAC

AC/DC converter: 100M\$?

Switchgear is required for grids

[ABB.com]

3-phase AC-breaker 10'000\$

Switchgear is required for grids

DC-breaker: basically half a converter

Switching 101

AC switching means: wait for next current zero crossing and "just" stop conducting.

DC switching means: actively push current to zero

[own work]

15

AC fault current dominated by line inductance

19

There are natural current zero crossings every 10ms \rightarrow stop there

AC-Solution: Gas circuit breakers

[hvl.ee.ethz.ch]

But in DC, the current does not go to zero by itself

DC fault current needs to be cleared in transient phase

DC breakers need to create countervoltage to stop current

Our AC gas circuit breaker cannot provide countervoltage

Maybe we can use gas CBs in a clever way

First commutate the current, then absorb the remaining Energy

To commutate: Lets repeat LC-circuit theory

Arcs are wierd, not resistive at all

We can generate a current zero crossing passively!

After current zero in the gas breaker, the grid recovers

- t0 fault
- t1 open gas breaker & start oscillation
- t2 current zero in breaker
- t3 capacitor charged up to arrester voltage
- trcs current is zero, auxillary switch opens

Now, we have everything to interrupt. Are we done now?

[xkcd.com]

Passive Oscillation Concept not new, but it is not optimized

- Improving the arc characteristics
 - → Decreases time of commutation
 - \rightarrow Increases maximum current that can be commutated
 - Decreases footprint inside substation (if L&C can be reduced)
 - Decreases cost (if L&C can be reduced)

And the reality is not ideal

The arc cannot react instantly

- a: low frequency
- b: medium frequency
- c: high frequency
- Definition of "high" depends on dynamic arc time constant τ
- The lower τ, the higher f we can use
 → can break faster.

We have a sophisitated current source

3 Modules

1kA current each

3kV maximum voltage

Flexible current waveform

We have a sophisitated current source

- Slow current ramp
 → determine static u(i)
- Fast "spikes" (~10us rising/falling)
 → determine dynamic τ

Lab Setup

There are many many free parameters...

Gas type

. . .

- Gas pressure
- Wall material (ablation)
- Nozzle shape (determines speed, density etc)
- Contact position
- Contact material (vaporizes)

... and processes

- supersonic flow
- 1-5 MW energy input
- radiative wall ablation
- turbulent mixing of "cold" (<1000K) gas with</p>
- >10000K plasma

. . .

everything is over after a few ms

- Adjustable contacts
- Nozzle easy to change
- Gas flow easily controllable (0-20bar)

- Measurement equipment
 - Current
 - Voltage
 - Pressure
 - Ablation (weighing)
 - Highspeed camera

[[]Miriam Vonesch] [own work]

Now we have all the tools toghether, lets look at results

- More Pressure = "better" u(i)
- More Ablation = "worse" u(i)

[1]: Bort, Franck (presented at FSO 2017, Brno, CZ) Influence of Ablation on Differential Arc Resistance

Nozzle ablation measurements

[Miriam Vonesch] [own work]

Arc voltage is a strong function of axial position

Determining where the "good" part of the voltage is created

Conclusion

- There is still much to do and to understand in 40-year old equipment
- We will see if we can really get fast enough
- (Highspeed cameras are awesome)

ETH zürich

How to switch off high voltage DC current without using semiconductors **Questions?**

Contact Information: Lorenz Bort <u>bort@eeh.ee.ethz.ch</u>

Add-on

- Although not following perfectly, I tried to follow the advice of this nice talk about good slides
- https://www.youtube.com/watch?v=meBXuTIPJQk