Minimizing Energy Storage in Cyber-Physical Systems

08.04.2018

Did you ever own one of these?

Nokia 1110 (2004)

Average use: several days

Battery: 800 mAh

Source: GSM arena

Do you own one of these?

Nokia 1110 (2004)

Battery: 800 mAh

Average use: several days

Source: GSM arena

Source: GSM arena

<u>iPhone X (2018)</u>

Internet use: ~12 h

Battery: 2716 mAh

Trend: as functionality increases so does the battery size cost env. impact

Batteryless systems

Cyber-physical systems

Main goal:

powering loads from transducer not storage*

Electrical vs electronic systems

Low power embedded systems

Common DC Transducers

Active power needs

MCU

10-100's mW

Idle power: 10 nW

Reliable execution in batteryless systems

Successful transmission depends on supplied energy (transducer + storage)

Assuming an adversarial source:

Masters in Embedded System Design at ALaRI, USI (Lugano)

Currently 4th year PhD student at D-ITET

IIS: (75%) Prof. Luca Benini

VLSI design, HW accelerators, heterogeneous computing platforms

Andrés Gómez

TIK: (75%) Prof. Lothar Thiele

Real-time scheduling, modular performance analysis, wireless network protocols

under the supervision of

Prof. Lothar Thiele

Prof. Luca Benini

in collaboration with

Lukas Sigrist

Andreas Tretter Rehan Ahmed

Pascal Hager Michele Magno

and many (many) master students...

with the support of

Design Aspects

Harvesting-based systems

Advantages:

<u>Potentially</u> large energy flow

Challenges:

Keeping modular design

Cost/space constraints

Making guarantees

As a system designer, I want to **minimize** assumptions/requirements

But I also want immortal systems!

Desired lifecycle:

Are long lifetimes the only reasonable design goal?

Predictability vs resilience

System should "live" as **long** as possible — **large** energy cycle Q empty full Predictable

System should "revive" as quickly as possible — small energy cycle Q

charging is **expensive**

empty full charging is cheap

Life

A few words about energy storage

I'm not a battery expert!

Main tradeoffs:

- recharge cycles
- power density
- energy density
- leakage

My objectives: high power density high recharge cycles

I use ceramic/electrolytic capacitors

When are batteryless systems most useful?

correlates with light

System requirements

Environment

 We need:
 control voltage

 retain data

 We want:
 minimize energy (Q)

 We want:
 minimize energy (Q)

We **do not** assume: **regular** availability **specific** transducers

We assume: primary energy > 0

Decoupled design

System Dynamics

If I want $T_{on} \approx 24$ hoursIf I want $T_{on} \approx 10$ ms $Q \approx 10$ kJoules (AA batt.) $Q \approx 1$ mJoule (100 μ F @ 5V) $T_{off} \approx 2400$ hours $T_{off} \approx 1$ s

Energy Management Unit

Architecture:

Behavior:

Performance evaluation

Border values:

Converter-dependent: $P_{min} \approx 20 \ \mu W$ and $\eta_{sys} \leq 0.8$

Sample Applications

Batteryless Camera:

Low power grayscale camera

Cortex M4

SD card

Application: storing Images in SD Card

Sample Applications

Application: Estimating walking speed

Sample Applications

Note: Entire estimation cycle is executed atomically

Design methodology for batteryless systems

Decoupling for modular and scalable design

Selected Publications

- Gomez A, Sigrist L, Schalch T, Benini L, Thiele L.
 "Efficient, Long-Term Logging of Rich Data Sensors using Transient Sensor Nodes." Transactions on Embedded Computing Systems. 2017. ACM.
- Sigrist L, Gomez A, Lim R, Lippuner S, Leubin M, Thiele L.
 "Measurement and validation of Energy Harvesting IoT Devices." In Proceedings of Conference on Design, Automation & Test in Europe (DATE). 2017. EDA Consortium.
- Gomez A, Sigrist L, Schalch T, Benini L, Thiele L.
 "Wearable, Energy-Opportunistic Vision Sensing for Walking Speed Estimation." In Proceedings of Sensors Applications Symposium (SAS). 2017. IEEE.
- Gomez A, Sigrist L, Magno M, Benini L, Thiele L.
 "Dynamic Energy Burst Scaling for Transiently Powered Systems." In Proceedings of Conference on Design, Automation & Test in Europe (DATE). 2016. EDA Consortium.