

Metasurfaces leveraging solar energy for icephobicity

Efstratios Mitridis

Department of Mechanical and Process Engineering Laboratory of Thermodynamics in Emerging Technologies

Critical issues in surface icing

Automobiles

edie.net

Windows

blog.brack.xyz

Photovoltaics

www.cleanenergyauthority.com

www.boldmethod.com

nipgroup.com

Structure

Introduction, motivation, and state-of-the-art in icephobicity. Economic figures and problems due to ice accumulation. Surface engineering of icephobic surfaces.

Image: Metasurfaces for heat concentration with renewable energy. Rational surface engineering: Fabrication and characterization.

Demonstrating a new icephobicity technology based on metasurfaces. Ice formation prevention or removal.

Structure

Introduction, motivation, and state-of-the-art in icephobicity. Economic figures and problems due to ice accumulation. Surface engineering of icephobic surfaces.

Image: A second structure of the second structure o

Demonstrating a new icephobicity technology based on metasurfaces. Ice formation prevention or removal.

EHzürich

Economic impact of ice formation and accumulation on surfaces

- Aircraft deicing market: \$1.30 billion (2020) ^[1]
- Global ice protection systems: \$10.17 billion (2021) ^[1]

Vehicle windshield deicing: engine running for up to 30 min ^[2]

www.motorbeam.com

www.rt.com

sbir.gsfc.nasa.gov

[1] MarketsandMarkets Research Private Ltd. (2015, 2017)[2] Farag A & Huang L-J (2003)

Economic impact of ice formation and accumulation on surfaces

 "Severe winter weather caused 15 percent of all insured auto, home and business catastrophe losses in the United States in 2014."

 "It costs an airline about \$6,000 to cancel a flight, according to masFlight. However, passengers also spend additional money as they accommodate their travel plans."

Energy required to melt ice

Mass = volume x density $(0 \circ C) = 10^{-2} [m^3] \times 916.7 [kg/m^3] = 9.2 \text{ kg of ice}$

Energy = mass x enthalpy of fusion = 9.2 [kg] x 333.55 [kJ/kg] = 3070 kJ

Energy required to melt ice

- Boeing 747 wing surface area: 524.9 m²
- This leads to an energy consumption of **450 kWh** !

De-icing = energy-intensive task

Common de-icing methods

- Sodium chloride
- Mechanical scraping

De-icing fluids

The city of Basel is using formates as thawing agents for de-icing.

cif.org

wikipedia.org

Icephobicity: State-of-the-art

State-of-the-art passive icephobicity approaches

- Hierarchical superhydrophobic surfaces
- Lubricant infused surfaces

State-of-the-art passive icephobicity approaches

Hierarchical superhydrophobic surfaces ^{[1],[2]}

State-of-the-art passive icephobicity approaches

Lubricant infused surfaces ^[3]

How do we define icephobicity?

Reduced ice adhesion

Reduced defrosting time

Reduced droplet contact time

Nucleation delay

How do we define icephobicity?

Reduced ice adhesion

Reduced defrosting time

Reduced droplet contact time

Nucleation delay

Introduction, motivation, and state-of-the-art in icephobicity. Economic figures and problems due to ice accumulation. Surface engineering of icephobic surfaces.

Image: A starting the starting of the start

Demonstrating a new icephobicity technology based on metasurfaces. Ice formation prevention or removal.

Inspiration

- Solar steam generation ^[1]
- Solar-enabled desalination ^[2]

Metamaterials for solar energy absorption

Metasurfaces for solar energy absorption

Facts:

□ We need surfaces that absorb sunlight.

 \Box Absorption also in the visible range => loss of transparency.

□ The absorption spectrum has to be as broadband as possible.

Metamaterials for solar energy absorption

Plasmonics: The most efficient way of creating sunlight absorbers that are ultra-thin at the same time.

Hint: Their properties cannot be found in natural materials.

Material: Gold (Au) nanoparticles

scholar.harvard.edu/ndurr/pages/multiphoton-luminescence-imaging

Design: Metamaterials for solar energy absorption

Facts:

Design: Metamaterials for solar energy absorption

Bruggeman effective medium theory:

$$\varepsilon_{\rm r,nc} = \frac{1}{4} \begin{cases} (3v_{\rm Au} - 1)\varepsilon_{\rm r,Au} + (3v_{\rm diel} - 1)\varepsilon_{\rm r,diel} \pm \\ \sqrt{\left[(3v_{\rm Au} - 1)\varepsilon_{\rm r,Au} + (3v_{\rm diel} - 1)\varepsilon_{\rm r,diel} \right]^2 + 8\varepsilon_{\rm r,Au}\varepsilon_{\rm r,diel}} \end{cases}$$

 $\mathcal{E}_{r,nc}$: effective permittivity of the nanocomposite

We need surfaces that absorb sunlight.

Absorption also in the visible range.

□ The absorption has to be as broadband as possible.

16

12

8

4

0

400

600

 ${\sf Im}(arepsilon_{\sf bulk})$ (-)

Design: Metamaterials for solar energy absorption

Bruggeman effective medium theory:

$$\varepsilon_{\rm r,nc} = \frac{1}{4} \begin{cases} (3v_{\rm Au} - 1)\varepsilon_{\rm r,Au} + (3v_{\rm diel} - 1)\varepsilon_{\rm r,diel} \pm \\ \sqrt{\left[(3v_{\rm Au} - 1)\varepsilon_{\rm r,Au} + (3v_{\rm diel} - 1)\varepsilon_{\rm r,diel} \right]^2 + 8\varepsilon_{\rm r,Au}\varepsilon_{\rm r,diel}} \end{cases}$$

16

12

8

4

400

600

800

v_{Au}=20%

λ : wavelength of light

bulk Au

1200

Au nanoparticles

 λ (nm)

Metasurface engineering: Fabrication and characterization

Fabrication and optical characterization

5 mm 0.3 0.2 N/N₀ (-) 0.1 Au 0.0 30 nm 2 6 8 10 4 0 TiO₂ d (nm) 50 nm $L_{\rm max} < 300$ nm

d: nanoparticle diameter

Sputter deposition: Au and TiO_2 .

Fabrication and optical characterization

.... 40 nm ____ 60 nm _.__ 100 nm _ __ 270 nm

Sputter deposition: Au and TiO_2 .

A: light absorption T: light transmission

Fabrication and optical characterization

.... 40 nm ____ 60 nm _.__ 100 nm ___ 270 nm

Sputter deposition: Au and TiO₂.

Light-induced heating and characterization with high-speed infrared imaging

Infrared imaging: Basic principles

Total radiation

$A(\lambda) + R(\lambda) + T(\lambda) = 1$

> For object temperatures <500 °C, thermal radiation lies completely in the infrared.

Infrared imaging: Basic principles

□ Thermal emissivity (ε)

The effectiveness of emitting energy as thermal radiation.

 $\varepsilon(\lambda) = A(\lambda)$

> The maximum emittance wavelength is inversely proportional to temperature.

 $\lambda_{\rm max}$ =2898/T

T: temperature [K]

Infrared imaging: Basic principles

Infrared imaging: Basic principles

Calculate temperature

Light-induced heating

P: power density

Light-induced heating

.... 40 nm ____ 60 nm _.__ 100 nm _ __ 270 nm

Introduction, motivation, and state-of-the-art in icephobicity. Economic figures and problems due to ice accumulation. Surface engineering of icephobic surfaces.

Image: A starting the starting of the start

Demonstrating a new icephobicity technology based on metasurfaces. Ice formation prevention or removal.

De-icing, anti-icing and defrosting

□ Ice adhesion measurements under visible light

De-icing, anti-icing and defrosting

□ Ice adhesion measurements under visible light

EHzürich

De-icing, anti-icing and defrosting

□ Ice adhesion measurements under visible light

 $[\]tau_{yx}$: shear stress

 $t_{\rm d}$: de-icing time

De-icing, anti-icing and defrosting

Light-induced anti-icing experiments with a single water droplet

De-icing, anti-icing and defrosting

Light-induced defrosting experiments

control

De-icing, anti-icing and defrosting

Light-induced defrosting experiments

P=0 kW m⁻² 2.4 kW m⁻² 0 kW m⁻²

De-icing, anti-icing and defrosting

Light-induced anti-icing under one sun

De-icing, anti-icing and defrosting

□ Light-induced anti-icing under <u>one sun</u>

- T: surface temperature
- $t_{\rm f}$: freezing time

Conclusions and outlook

Conclusions

Ultra-thin, easy-to-fabricate, metamaterial coatings provide broadband light absorption.

- □ Rationally tunable absorption: samples can be transparent or black.
- □ The exhibited temperature increase is enough to melt ice and prevent its formation.
- □ Trade-off between level of absorption and performance.

Applications:

- ✓ Windows and windshields
- ✓ Sun roofs
- ...and more applications where a degree of optical transparency is required

jansen.com

solarbuldingtech.com

The future

Facts:

- ✓ **Superhydrophobicity** enhances the anti-icing performance.
- ✓ Superhydrophobicity: requires **micro-/nano-texture** and suitable surface **chemistry**.
- ✓ Minimize thermal conductivity of the substrate, or resistance to heat transfer.

The future

Facts:

- ✓ **Superhydrophobicity** enhances the anti-icing performance.
- ✓ Superhydrophobicity: requires **micro-/nano-texture** and suitable surface **chemistry**.
- ✓ Minimize thermal conductivity of the substrate, or resistance to heat transfer.

The future

- ✓ **Superhydrophobicity** enhances the anti-icing performance. ^{[1],[2]}
- ✓ Superhydrophobicity: requires **micro/nano-texture** and suitable **chemistry**.

Micro/nano-texture:

cleanroom or wet chemistry techniques

Chemistry: low surface energy coating: polymer

Initiated chemical vapor deposition (iCVD)

Chemistry:

low surface energy coating: polymer

Initiated chemical vapor deposition (iCVD)

Chemistry:

low surface energy coating: polymer heated cnar

Initiator: *tert*-Butyl peroxide (**TBPO**) 1H,1H,2H,2H-Perfluorodecyl acrylate (**PFDA**) Monomer:

EHzürich

Chemistry:

Initiated chemical vapor deposition (iCVD)

Initiator: *tert*-Butyl peroxide (**TBPO**)

> Used as initiator in free radical polymerization.

Monomer: 1H,1H,2H,2H-Perfluorodecyl acrylate (PFDA)

- \succ Has one C=C bond that will be attacked by the free radical.
- > Can lead to low surface energy hydrophobic polymer coatings.

EHzürich

Initiated chemical vapor deposition (iCVD)

Chemistry:

low surface energy coating: polymer

before deposition

after deposition

Hybrid icephobicity

Prof. Dimos Poulikakos

The group

Laboratory of Thermodynamics in Emerging Technologies

Contact information and credits

Efstratios Mitridis **ETH Zurich** Sonneggstrasse 3 ML J 15 8092 Zurich Switzerland

www.ltnt.ethz.ch

Prof. Dimos Poulikakos

Dr. Thomas Schutzius

Dr. Hadi Eghlidi

FNSNF Fonds nation

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

www.detail.de