

Smart Grids or Microgrids?

Optimal design of future electricity distribution systems

Raphael Wu Prof. Dr. Giovanni Sansavini

Reliability and Risk Engineering Lab: <u>rre.ethz.ch</u>

Overview: Trends in the electricity sector

Where we were: Traditional electricity grid

- Large, centralised generation
- Unidirectional power flow
- Flexibility: Fast-ramping plants

Where we're going: Smart Grids

- Communication, computation
- Decentralisation
- Distributed Energy Resources (DER)
 - Wind and solar power
 - Flexible demands (electric vehicles, smart homes)
- New pricing and market schemes

Smart grids and microgrids

- Smart Grids
 - Distributed Energy Resources (DER)
 - New pricing and market schemes
 - Communication, measurements and control
- Microgrids: Islands
 - Sufficient DER
 - Coordination within clearly defined boundaries
 - Communication, protection and control

Proposed Benefits

Research questions

Which benefits justify upgrading current grids to active distribution networks or microgrids?

- How to optimise microgrid design for cost, reliability and resilience?
- What are current incentives and drivers towards smart grids or microgrids?
- Which solution(s) could be preferred in the future?

Mathematical (MILP)

+ Optimality guarantee

Optimisation method

	Metaheuristic
+	Nonlinearities (exact power flow)

 $\min c^{T} x$ subject to $Ax \leq b$ $x_{R} \in \mathbb{R}$ $x_{I} \in \mathbb{Z}$ Notation: Binary $y \in \{0,1\}$

Design Optimisation

Optimal DER and grid design

- Approximate investment with fixed and capacitydependent costs
 - Binary investment decision y^{DER}_{Inv}
 - Cost proportional to capacity S^{DER}_{max}

- Equivalent annual cost
 - Parameters: Discount rate and life time
 - Compare assets with different life times
 - Compare investment and operation cost

Optimal Operation

Objective

$$C_{Op,t} = c_t^{PCC} * P_t^{PCC} + \sum_{DER} c_{Op}^{DER} * P_t^{DER} + \sum_{RG} c_{Curt}^{RG} (P_{t,Avl}^{RG} - P_t^{RG})$$

Imports Fuel cost Renewable curtailment

Operating constraints

- Equipment capacity (lines, DER)
- Available solar radiation
- Demand flexibility limits
- Linearised DistFlow [Baran & Wu 1989]
- Storage
 - State of charge constraints
 - Cycling limit (aging)

Case Study

Raphael Wu | 02/04/2019 | 9

ETH zürich

IEEE 37 Bus system

- Location California
- Demand
 - 2.7 MW peak Solar PV 0.5 MW peak
- Demand types Residential, commercial
- Electric Vehicles 0.07 MW peak

Expansion Options

- New lines
- Distributed Generator (DG): Biogas microturbine
- Battery storage

Time horizon

1 year (8 representative days)

Smart grid or Microgrid for profit?

- No new lines or DER
- Flexible demand shifted to low price periods
- Arbitrage does not justify DER investments

Reliability and Resilience

Raphael Wu | 02/04/2019 | 12

Reliability

Definition

 «Reliability is a *characteristic* of an item, expressed by the *probability* that the item will perform its *required functions* under given conditions *for a stated time interval*» [Birolini 2004]

Simple model

• Constant failure rate λ (1/year)

Reliability in Electricity Distribution

- Required function: Supply all power demands of all customers
- Modelling assumptions
 - Radial networks \rightarrow Series configuration
 - Constant failure rates λ_i (1/year)
 - Constant repair times τ_i (hours)

$$U_n = \sum_{i \in \mathbb{P}_{PCC,n}} \lambda_i \tau_i$$

Reliability Indices (N_n : Number of customers at load point n)

• $SAIFI = \frac{Number of customer interruptions}{Number of customers} = \frac{\sum_n \lambda_n N_n}{\sum_n N_n}$ (1/year)

• SAIDI =
$$\frac{sum \ of \ customer \ interruption \ durations}{Number \ of \ customers} = \frac{\sum_n U_n N_n}{\sum_n N_n}$$
 (hours/year)

• *EENS* =
$$\sum_{n} U_n \bar{P}_n^{Demand}$$
 (kWh/year)

[Billinton and Allan 2013]

ETH zürich

Reliability: Internal faults

• Model unreliability of line segments $i \rightarrow j$ with flow on graph for node n

$$\min \sum_{i,j} y_{ij}^{n}, \text{ subject to} \\ \sum_{j \in N(i)} f_{ij}^{n} - f_{ji}^{n} = \begin{cases} 1 \text{ for PCC} \\ -1 \text{ for current node } (i = n) \\ 0 \text{ otherwise} \end{cases}$$

- No contribution in case of multiple paths
 - Assuming single line failures
 - S $y_{ij}^n \ge (f_{ij}^n + f_{ji}^n) 0.6, y_{ij}^n \in \{0,1\}$

Reliability indices: SAIFI, SAIDI, EENS

Resilience

Definition

- «Resilience is the ability of a system to resist the effects of a disruptive force and to reduce performance deviations» [Nan & Sansavini 2017]
- Absorptive, adaptive and restorative capability

Quantification

Performance loss, e.g. Energy not supplied

In Distribution Grids

Microgrid Islanding events

Resilience: Islanding events

- No power exchange at PCC $P_t^{PCC} = Q_t^{PCC} = 0$
- Unforeseen events with uncertain duration
 - Start 1 islanding scenario at every time step

New decision variables

- Islanding investment y^{Isl}_{Inv}
- Demand not supplied for low-priority loads $0 \le P_{NS,t}^{Dmd} \le P_t^{Dmd} * y_{NS}^{Dmd}$

Resilience quantification

Same indicators as reliability: SAIFI, SAIDI, EENS

Reliability

Failure rate Repair duration 0.14 per mile and year 4h

Resilience

Islanding events2Islanding duration2

2.4 per year 2..8 h

Cost

Residential ENS	3.3 \$/kWh
Commercial ENS	370 \$/kWh

Case Study: IEEE 37 bus system

Results: Minimising Social Cost

- Microgrid and DER built for higher commercial load
- Shift from storage to DG
- DG mostly idle
- Low costs for reliability & resilience

Results: Reliability and Resilience

- Improvement with more DER and Microgrid
- Alternative approach: Predefine targets [CPUC 2017]
- EENS increase due to change in load shape

DER Flexibility

Additional income opportunities

Ancillary services

- Offering capacity to ramp up or down
- Remuneration
 - Capacity payment
 - Energy payment

Modelling

- Maximum ramp-up scenario $\rightarrow P_t^{PCC,Up}$
- Maximum ramp-down scenario $\rightarrow P_t^{PCC,Dn}$
- Income $I_{As,t} \propto (P_t^{PCC,Up} P_t^{PCC}) + (P_t^{PCC} P_t^{PCC,Dn})$

Ancillary service results

- DER can provide substantial flexible capacity
 - Up to 85% of peak load
- Increased use of Distributed Generator

Additional income

- Up to 15% of operating cost reduction
- Optimal DER capacities do not change
- Current ancillary services do not justify DER investments

Conclusions

- Smart grids or Microgrids?
- Incentives and drivers

Preferred future solutions

- Depends on demand, costs and resilience goals
- Reliability and resilience goals
- Ancillary services
- Both DER and microgrids

References

Baran, M. E., and F. F. Wu. 'Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing'. *IEEE Transactions on Power Delivery* 4, no. 2 (April 1989): 1401–7.
Billinton, Roy, and Ronald N. Allan. *Reliability Evaluation of Power Systems*. Springer, 2013.
Birolini, Alessandro. *Reliability Engineering: Theory and Practice*. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
California Public Utilities Commission. *Decision 17-09-005*, 18 September 2017.

Image sources

Electricity Grid Schematic English by MBizon, licensed CC BY-SA3.0. https://commons.wikimedia.org/wiki/File:Electricity_Grid_Schematic_English.svg