Designing Incentive-Compatible and Coalition-Proof Payment Mechanisms for Electricity Markets

Orcun Karaca
joint work with Prof. M. Kamgarpour
Institut für Automatik, ETH Zürich
Frontiers in Energy Research
April 16th, 2019, Zürich, Switzerland

Electricity markets for stability

- Transformation to deregulated competitive markets
- Stability: Supply and demand balance at every instance

Electricity markets for stability

- Transformation to deregulated competitive markets
- Stability: Supply and demand balance at every instance

Electricity markets for stability

- Transformation to deregulated competitive markets
- Stability: Supply and demand balance at every instance

EU 2020 Target 20\% renewables

Electricity markets for stability

- Transformation to deregulated competitive markets
- Stability: Supply and demand balance at every instance
- Role of electricity markets in ensuring this stability

EU 2020 Target 20\% renewables

Example 1: Control reserves market

Secondary control

Tertiary control


```
Legend}\begin{array}{rl}{\square}&{=}\\{|}&{=\mathrm{ Power plant output }}\\{=}&{\mathrm{ Balancing service }}
```

- 2010 swissgrid ag
- Different supplies depending on speed and direction (sign)
- Involves probabilistic dimensioning criteria

Example 1: Control reserves market


```
Legend
    = Power plant output
    = Balancing service
```

- Different supplies depending on speed and direction (sign)
- Involves probabilistic dimensioning criteria

Example 2: Wholesale electricity markets

- Different supplies depending on bus/node
- Considers the physics behind the transmission network

Example 2: Wholesale electricity markets

- Different supplies depending on bus/node
- Considers the physics behind the transmission network

Example 2: Wholesale electricity markets

- Different supplies depending on bus/node
- Considers the physics behind the transmission network

Example 2: Wholesale electricity markets

- Different supplies depending on bus/node
- Considers the physics behind the transmission network

Market design criteria
Efficiency: Immunity to strategic manipulations

Market design criteria
Efficiency: Immunity to strategic manipulations

How can we eliminate strategic manipulations to achieve a stable and an efficient grid?

Outline

Market framework and incentive-compatibility

Coalition-proofness using the core

Designing coalition-proof mechanisms

Numerical results

Outline

Market framework and incentive-compatibility

Coalition-proofness using the core

Designing coalition-proof mechanisms

Numerical results

Electricity market framework

- Wholesale electricity markets, control reserve markets, and many others; generalization of reverse auctions

Electricity market framework

- Wholesale electricity markets, control reserve markets, and many others; generalization of reverse auctions

Electricity market framework

- Wholesale electricity markets, control reserve markets, and many others; generalization of reverse auctions

Utility of bidders $=$ Payment - True cost
Utility of $\mathrm{CO}=-$ Total payment

Payment design on a simple procurement auction

- Procure 800 MWh from 2 generators by minimizing the cost

Payment design on a simple procurement auction

- Procure 800 MWh from 2 generators by minimizing the cost

- Payment rule: pay winners their bid

Payment design on a simple procurement auction

- Procure 800 MWh from 2 generators by minimizing the cost

- Payment rule: pay winners their bid

Payment design on a simple procurement auction

- Procure 800 MWh from 2 generators by minimizing the cost

- Payment rule: pay winners their bid
- Bid very large, hard to predict

Vickrey auction and its desirable properties

- Payment rule: pay the $2^{\text {nd }}$ price

Vickrey auction and its desirable properties

- Payment rule: pay the $2^{\text {nd }}$ price

Vickrey auction and its desirable properties

- Payment rule: pay the $2^{\text {nd }}$ price

- Incentive-compatible: truthfulness is the dominant-strategy [Vickrey 1961]

How do we ensure incentive-compatibility for complex electricity markets?

Allocation rule as an optimization problem

- Private true cost of bidder l

$$
c_{l}: \mathbb{X}_{l} \rightarrow \mathbb{R}_{+} \text {such that } 0 \in \mathbb{X}_{1} \subset \mathbb{R}_{+} \text {and } c_{l}(0)=0
$$

- Reported cost of bidder l

$$
b_{l}: \hat{\mathbb{X}}_{l} \rightarrow \mathbb{R}_{+} \text {such that } 0 \in \hat{\mathbb{X}}_{l} \subset \mathbb{R}_{+} \text {and } b_{l}(0)=0
$$

Allocation rule as an optimization problem

- Private true cost of bidder l

$$
c_{l}: \mathbb{X}_{l} \rightarrow \mathbb{R}_{+} \text {such that } 0 \in \mathbb{X}_{l} \subset \mathbb{R}_{+} \text {and } c_{l}(0)=0
$$

- Reported cost of bidder l

$$
b_{l}: \hat{\mathbb{X}}_{l} \rightarrow \mathbb{R}_{+} \text {such that } 0 \in \hat{\mathbb{X}}_{l} \subset \mathbb{R}_{+} \text {and } b_{l}(0)=0
$$

- The central operator solves for the economic dispatch

$$
\begin{aligned}
J(\mathcal{B})= & \min _{x \in \widehat{\mathbb{X}}} \sum_{l \in L} b_{l}\left(x_{l}\right) \\
& \text { s.t. } \quad x \in \mathbb{S}
\end{aligned}
$$

- Production limits $\hat{\mathbb{X}}=\hat{\mathbb{X}}_{1} \times \cdots \times \hat{\mathbb{X}}_{|L|}$
- Market constraints $\mathbb{S} \subset \mathbb{R}_{+}^{|L|}$-e.g., security constraints

Updating the framework with the allocation rule

Central Operator

$$
\begin{equation*}
J(\mathcal{B})=\min _{x \in \hat{\mathbb{X}}} \sum_{l \in L} b_{l}\left(x_{l}\right) \text { s.t. } x \in \mathbb{S} \tag{CO}
\end{equation*}
$$

The allocation rule $x^{*}(\mathcal{B})$ is the minimizer

Updating the framework with the allocation rule

Central Operator

$$
\begin{equation*}
J(\mathcal{B})=\min _{x \in \hat{\mathbb{X}}} \sum_{l \in L} b_{l}\left(x_{l}\right) \text { s.t. } x \in \mathbb{S} \tag{CO}
\end{equation*}
$$

The allocation rule $x^{*}(\mathcal{B})$ is the minimizer

- Bidder's utility: $u_{l}(\mathcal{B})=p_{l}(\mathcal{B})-c_{l}\left(x_{l}^{*}(\mathcal{B})\right)$

Updating the framework with the allocation rule

Central Operator

$$
\begin{equation*}
J(\mathcal{B})=\min _{x \in \hat{\mathbb{X}}} \sum_{l \in L} b_{l}\left(x_{l}\right) \text { s.t. } x \in \mathbb{S} \tag{CO}
\end{equation*}
$$

The allocation rule $x^{*}(\mathcal{B})$ is the minimizer

- Bidder's utility: $u_{l}(\mathcal{B})=p_{l}(\mathcal{B})-c_{l}\left(x_{l}^{*}(\mathcal{B})\right)$
- CO's utility: $\quad u_{\mathrm{CO}}(\mathcal{B})=-\sum_{l \in L} p_{l}(\mathcal{B})$

Desirable properties for the payment rules

Individually rational: Nonnegative utilities for bidders
Efficient: Sum of all utilities is maximized

Desirable properties for the payment rules

Individually rational: Nonnegative utilities for bidders
Efficient: Sum of all utilities is maximized
Incentive-compatible: Truthfulness is the dominant strategy

Desirable properties for the payment rules

Individually rational: Nonnegative utilities for bidders
Efficient: Sum of all utilities is maximized
Incentive-compatible: Truthfulness is the dominant strategy

- Widely used mechanisms
- Pay-as-bid mechanism:

$$
p_{l}(\mathcal{B})=b_{l}\left(x_{l}^{*}(\mathcal{B})\right)
$$

- Locational marginal pricing (LMP) mechanism:

$$
p_{l}(\mathcal{B})=\lambda_{l}^{*}(\mathcal{B}) x_{l}^{*}(\mathcal{B})
$$

Desirable properties for the payment rules

- \checkmark Individually rational: Nonnegative utilities for bidders
- \times Efficient: Sum of all utilities is maximized
- \times Incentive-compatible: Truthfulness is the dominant strategy
- Widely used mechanisms
- Pay-as-bid mechanism:

$$
p_{l}(\mathcal{B})=b_{l}\left(x_{l}^{*}(\mathcal{B})\right)
$$

- Locational marginal pricing (LMP) mechanism:

$$
p_{l}(\mathcal{B})=\lambda_{l}^{*}(\mathcal{B}) x_{l}^{*}(\mathcal{B})
$$

- Not incentive-compatible, not efficient!

Desirable properties for the payment rules

- \checkmark Individually rational: Nonnegative utilities for bidders
- \times Efficient: Sum of all utilities is maximized
- \times Incentive-compatible: Truthfulness is the dominant strategy
- Widely used mechanisms
- Pay-as-bid mechanism:

$$
p_{l}(\mathcal{B})=b_{l}\left(x_{l}^{*}(\mathcal{B})\right)
$$

- Locational marginal pricing (LMP) mechanism:

$$
p_{l}(\mathcal{B})=\lambda_{l}^{*}(\mathcal{B}) x_{l}^{*}(\mathcal{B})
$$

- Not incentive-compatible, not efficient!
- Manipulations risk the stability of the grid [Wolfram 1997], [Joskow 2001]

Example: Four-node three-generator network

Example: Four-node three-generator network

DC power flow model with identical lossless lines:
$\theta_{i}-\theta_{j}$: Power flow from Node i to Node j $\exists \theta \in \mathbb{R}^{n}$ such that $x_{i}-D_{i}=\sum_{j} \theta_{i}-\theta_{j}: \underbrace{\lambda_{i}}_{\text {Lagrange M. }}, \forall i \quad$ (Nodal Balance)

Example: Four-node three-generator network

DC power flow model with identical lossless lines:
$\theta_{i}-\theta_{j}$: Power flow from Node i to Node j $\exists \theta \in \mathbb{R}^{n}$ such that $x_{i}-D_{i}=\sum_{j} \theta_{i}-\theta_{j}: \underbrace{\lambda_{i}}_{\text {Lagrange M. }}, \forall i \quad$ (Nodal Balance)

Example: Four-node three-generator network

DC power flow model with identical lossless lines:
$\theta_{i}-\theta_{j}$: Power flow from Node i to Node j $\exists \theta \in \mathbb{R}^{n}$ such that $x_{i}-D_{i}=\sum_{j} \theta_{i}-\theta_{j}: \underbrace{\lambda_{i}}, \forall i \quad$ (Nodal Balance)

$$
\theta_{i}-\theta_{j} \leq C_{i j}, \forall i, j
$$

(Line Limits)

Example: Four-node three-generator network

Example: Four-node three-generator network

Table: LMP outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding			
	$p(u)$	x		
Generator 1	$0(0)$	0		
Generator 2	$0(0)$	0		
Generator 3	$180(40)$	20		

$$
p_{3}=\lambda_{3} \times x_{3}=9 \times 20
$$

Example: Four-node three-generator network

Table: LMP outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding		Generator 3 deviates	
	$p(u)$	x	$p(u)$	x
Generator 1	$0(0)$	0		
Generator 2	$0(0)$	0		
Generator 3	$180(40)$	20		

Example: Four-node three-generator network

Table: LMP outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding		Generator 3 deviates	
	$p(u)$	x	$p(u)$	x
Generator 1	$0(0)$	0		
Generator 2	$0(0)$	0		
Generator 3	$180(40)$	20		

Example: Four-node three-generator network

Table: LMP outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding		Generator 3 deviates	
	$p(u)$	x	$p(u)$	x
Generator 1	$0(0)$	0	$0(0)$	0
Generator 2	$0(0)$	0	$0(0)$	0
Generator 3	$180(40)$	20	$240(100)$	20

Example: Four-node three-generator network

Table: LMP outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding		Generator 3 deviates	
	$p(u)$	x	$p(u)$	x
Generator 1	$0(0)$	0	$0(0)$	0
Generator 2	$0(0)$	0	$0(0)$	0
Generator 3	$180(40)$	20	$240(100)$	20

Under LMP, unilateral deviation is profitable for bidders

The Vickrey-Clarke-Groves (VCG) mechanism

[Vickrey 1961], [Clarke 1971], [Groves 1973]

- Define optimal value of (CO) without bidder l

$$
J\left(\mathcal{B}_{-l}\right) \geq J(\mathcal{B})
$$

where

$$
\begin{aligned}
J\left(\mathcal{B}_{-l}\right)= & \min _{x \in \hat{\mathbb{X}}}
\end{aligned} \sum_{l \in L} b_{l}\left(x_{l}\right)
$$

The Vickrey-Clarke-Groves (VCG) mechanism

[Vickrey 1961], [Clarke 1971], [Groves 1973]

- Define optimal value of (CO) without bidder l

$$
J\left(\mathcal{B}_{-l}\right) \geq J(\mathcal{B})
$$

The Vickrey-Clarke-Groves (VCG) mechanism

[Vickrey 1961], [Clarke 1971], [Groves 1973]

- Define optimal value of (CO) without bidder l

$$
J\left(\mathcal{B}_{-l}\right) \geq J(\mathcal{B})
$$

- VCG payment is the externality

$$
p_{l}(\mathcal{B})=\underbrace{J\left(\mathcal{B}_{-l}\right)}_{\text {cost of others in the absence of } l}-\underbrace{\left(J(\mathcal{B})-b_{l}\left(x_{l}^{*}(\mathcal{B})\right)\right)}_{\text {cost of others when } l \text { is present }}
$$

The Vickrey-Clarke-Groves (VCG) mechanism

[Vickrey 1961], [Clarke 1971], [Groves 1973]

- Define optimal value of (CO) without bidder l

$$
J\left(\mathcal{B}_{-l}\right) \geq J(\mathcal{B})
$$

- VCG payment is the externality

$$
p_{l}(\mathcal{B})=\underbrace{J\left(\mathcal{B}_{-l}\right)}_{\text {cost of others in the absence of } l}-\underbrace{\left(J(\mathcal{B})-b_{l}\left(x_{l}^{*}(\mathcal{B})\right)\right)}_{\text {cost of others when } l \text { is present }}
$$

Theorem 1
Given (CO), the VCG mechanism is
a) Incentive-compatible
b) Efficient
c) Individually rational

The Vickrey-Clarke-Groves (VCG) mechanism

- Define optimal value of (CO) without bidder l

$$
J\left(\mathcal{B}_{-l}\right) \geq J(\mathcal{B})
$$

- VCG payment is the externality

$$
p_{l}(\mathcal{B})=\underbrace{J\left(\mathcal{B}_{-l}\right)}_{\text {cost of others in the absence of } l}-\underbrace{\left(J(\mathcal{B})-b_{l}\left(x_{l}^{*}(\mathcal{B})\right)\right)}_{\text {cost of others when } l \text { is present }}
$$

Theorem 1
Given (CO), the VCG mechanism is
a) Incentive-compatible
b) Efficient
c) Individually rational

- Generalization of the $2^{\text {nd }}$ price mechanism

The lovely but lonely VCG mechanism [Aasubate and Migoom 2006]

Table: VCG outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding			
	$p(u)$	x		
Generator 1	$0(0)$	0		
Generator 2	$0(0)$	0		
Generator 3	$260(120)$	20		

$$
p_{3}=J\left(\mathcal{B}_{-3}\right)-\left(J(\mathcal{B})-b_{3}\left(x_{3}^{*}(\mathcal{B})\right)\right)
$$

The lovely but lonely VCG mechanism [Aasubate and Migoom 2006]

Table: VCG outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding			
	$p(u)$	x		
Generator 1	$0(0)$	0		
Generator 2	$0(0)$	0		
Generator 3	$260(120)$	20		

$$
p_{3}=260-(140-140)=260
$$

The lovely but lonely VCG mechanism [Aasubate and Migoom 2006]

Table: VCG outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding			
	$p(u)$	x		
Generator 1	$0(0)$	0		
Generator 2	$0(0)$	0		
Generator 3	$260(120)$	20		

Truthful bidding is the dominant strategy

The lovely but lonely VCG mechanism [Aassube and Misgom 200]

Table: VCG outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding		1 and 2 collude	
	$p(u)$	x	$p(u)$	x
Generator 1	$0(0)$	0		
Generator 2	$0(0)$	0		
Generator 3	$260(120)$	20		

The lovely but lonely VCG mechanism [Aasubate and Migoom 2006]

Table: VCG outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding		1 and 2 collude	
	$p(u)$	x	$p(u)$	x
Generator 1	$0(0)$	0	$140(10)$	10
Generator 2	$0(0)$	0	$140(10)$	10
Generator 3	$260(120)$	20	$0(0)$	0

The lovely but lonely VCG mechanism [Ausubel and Migrom 2006]

$c_{3}\left(x_{3}\right)=.1 x_{3}^{2}+5 x_{3}$

- Another important property:
- Coalition-proofness
- Joint deviation is not profitable for losing bidders
- Bidding with multiple identities is not profitable for any bidder

Which mechanisms attain the coalition-proofness property?

Outline

Market framework and incentive-compatibility

Coalition-proofness using the core

Designing coalition-proof mechanisms

Numerical results

Bringing in the core from coalitional game theory

- Bidder's utility:

$$
u_{l}(\mathcal{B})=p_{l}(\mathcal{B})-c_{l}\left(x_{l}^{*}(\mathcal{B})\right)
$$

- Central operator's utility:

$$
u_{\mathrm{CO}}(\mathcal{B})=-\sum_{l \in L} p_{l}(\mathcal{B})
$$

Bringing in the core from coalitional game theory

- Bidder's revealed utility: $\bar{u}_{l}(\mathcal{B})=p_{l}(\mathcal{B})-b_{l}\left(x_{l}^{*}(\mathcal{B})\right)$
- Central operator's revealed utility:

$$
\bar{u}_{\mathrm{CO}}(\mathcal{B})=-\sum_{l \in L} p_{l}(\mathcal{B})
$$

Bringing in the core from coalitional game theory

- Bidder's revealed utility: $\bar{u}_{l}(\mathcal{B})=p_{l}(\mathcal{B})-b_{l}\left(x_{l}^{*}(\mathcal{B})\right)$
- Central operator's revealed utility:

$$
\bar{u}_{\mathrm{CO}}(\mathcal{B})=-\sum_{l \in L} p_{l}(\mathcal{B})
$$

- Objective value under the profile $\mathcal{B}_{S}=\left\{b_{l}\right\}_{l \in S}, S \subseteq L$

$$
\begin{aligned}
J\left(\mathcal{B}_{S}\right)= & \min _{x \in \hat{\mathbb{X}}} \sum_{l \in S} b_{l}\left(x_{l}\right) \\
& \text { s.t. } x \in \mathbb{S}, x_{-S}=0
\end{aligned}
$$

Bringing in the core from coalitional game theory

- Bidder's revealed utility: $\bar{u}_{l}(\mathcal{B})=p_{l}(\mathcal{B})-b_{l}\left(x_{l}^{*}(\mathcal{B})\right)$
- Central operator's revealed utility:

$$
\bar{u}_{\mathrm{CO}}(\mathcal{B})=-\sum_{l \in L} p_{l}(\mathcal{B})
$$

$$
\begin{aligned}
J\left(\mathcal{B}_{S}\right)= & \min _{x \in \mathbb{X}} \sum_{l \in S} b_{l}\left(x_{l}\right) \\
& \text { s.t. } x \in \mathbb{S}, x_{-S}=0
\end{aligned}
$$

Bringing in the core from coalitional game theory

- Bidder's revealed utility: $\bar{u}_{l}(\mathcal{B})=p_{l}(\mathcal{B})-b_{l}\left(x_{l}^{*}(\mathcal{B})\right)$
- Central operator's revealed utility:

$$
\bar{u}_{\mathrm{CO}}(\mathcal{B})=-\sum_{l \in L} p_{l}(\mathcal{B})
$$

- The core: set of revealed utilities that cannot be improved upon by forming coalitions

$$
\begin{aligned}
J\left(\mathcal{B}_{S}\right)= & \min _{x \in \mathbb{\mathbb { X }}} \sum_{l \in S} b_{l}\left(x_{l}\right) \\
& \text { s.t. } x \in \mathbb{S}, x_{-S}=0
\end{aligned}
$$

Bringing in the core from coalitional game theory

- Bidder's revealed utility: $\bar{u}_{l}(\mathcal{B})=p_{l}(\mathcal{B})-b_{l}\left(x_{l}^{*}(\mathcal{B})\right)$
- Central operator's revealed utility:

$$
\bar{u}_{\mathrm{CO}}(\mathcal{B})=-\sum_{l \in L} p_{l}(\mathcal{B})
$$

- The core: set of revealed utilities that cannot be improved upon by forming coalitions

$$
\begin{aligned}
\operatorname{Core}(\mathcal{B})=\{\bar{u} \in \mathbb{R} \times \underbrace{\mathbb{R}_{+}^{|L|}} \mid & \underbrace{\bar{u}_{\mathrm{CO}}+\sum_{l \in L} \bar{u}_{l}=-J(\mathcal{B})}, \\
& \underbrace{\left.\bar{u}_{\mathrm{CO}}+\sum_{l \in S} \bar{u}_{l} \geq-J\left(\mathcal{B}_{S}\right), \forall S \subset L\right\}}
\end{aligned}
$$

$$
\begin{aligned}
J\left(\mathcal{B}_{S}\right)= & \min _{x \in \mathbb{X}} \sum_{l \in S} b_{l}\left(x_{l}\right) \\
& \text { s.t. } x \in \mathbb{S}, x_{-S}=0
\end{aligned}
$$

Bringing in the core from coalitional game theory

- Bidder's revealed utility: $\bar{u}_{l}(\mathcal{B})=p_{l}(\mathcal{B})-b_{l}\left(x_{l}^{*}(\mathcal{B})\right)$
- Central operator's revealed utility:

$$
\bar{u}_{\mathrm{CO}}(\mathcal{B})=-\sum_{l \in L} p_{l}(\mathcal{B})
$$

- The core: set of revealed utilities that cannot be improved upon by forming coalitions

$$
\operatorname{Core}(\mathcal{B})=\{\bar{u} \in \mathbb{R} \times \underbrace{\mathbb{R}_{+}^{|L|}}_{\substack{\text { individ. } \\ \text { rational }}} \mid \underbrace{\bar{u}_{\mathrm{CO}}+\sum_{l \in L} \bar{u}_{l}=-J(\mathcal{B})},
$$

$$
\underbrace{\left.\bar{u}_{\mathrm{CO}}+\sum_{l \in S} \bar{u}_{l} \geq-J\left(\mathcal{B}_{S}\right), \forall S \subset L\right\}}
$$

$$
\begin{aligned}
J\left(\mathcal{B}_{S}\right)= & \min _{x \in \hat{\mathbb{X}}} \sum_{l \in S} b_{l}\left(x_{l}\right) \\
& \text { s.t. } x \in \mathbb{S}, x_{-S}=0
\end{aligned}
$$

Bringing in the core from coalitional game theory

- Bidder's revealed utility: $\bar{u}_{l}(\mathcal{B})=p_{l}(\mathcal{B})-b_{l}\left(x_{l}^{*}(\mathcal{B})\right)$
- Central operator's revealed utility:

$$
\bar{u}_{\mathrm{CO}}(\mathcal{B})=-\sum_{l \in L} p_{l}(\mathcal{B})
$$

- The core: set of revealed utilities that cannot be improved upon by forming coalitions

$$
\operatorname{Core}(\mathcal{B})=\{\left.\bar{u} \in \mathbb{R} \times \underbrace{\mathbb{R}_{+}^{|L|}}_{\begin{array}{c}
\text { individ. } \\
\text { rational }
\end{array}} \right\rvert\, \underbrace{\bar{u}_{\mathrm{CO}}+\sum_{l \in L} \bar{u}_{l}=-J(\mathcal{B})}_{\text {efficient }},
$$

$$
\underbrace{\left.\bar{u}_{\mathrm{CO}}+\sum_{l \in S} \bar{u}_{l} \geq-J\left(\mathcal{B}_{S}\right), \forall S \subset L\right\}}
$$

$$
\begin{aligned}
J\left(\mathcal{B}_{S}\right)= & \min _{x \in \mathbb{\mathbb { X }}} \sum_{l \in S} b_{l}\left(x_{l}\right) \\
& \text { s.t. } x \in \mathbb{S}, x_{-S}=0
\end{aligned}
$$

Bringing in the core from coalitional game theory

- Bidder's revealed utility: $\bar{u}_{l}(\mathcal{B})=p_{l}(\mathcal{B})-b_{l}\left(x_{l}^{*}(\mathcal{B})\right)$
- Central operator's revealed utility:

$$
\bar{u}_{\mathrm{CO}}(\mathcal{B})=-\sum_{l \in L} p_{l}(\mathcal{B})
$$

- The core: set of revealed utilities that cannot be improved upon by forming coalitions

$$
\operatorname{Core}(\mathcal{B})=\{\left.\bar{u} \in \mathbb{R} \times \underbrace{\mathbb{R}_{+}^{|L|}}_{\begin{array}{c}
\text { individ. } \\
\text { rational }
\end{array}} \right\rvert\, \underbrace{\bar{u}_{\mathrm{CO}}+\sum_{l \in L} \bar{u}_{l}=-J(\mathcal{B})}_{\text {efficient }},
$$

$$
\begin{aligned}
J\left(\mathcal{B}_{S}\right)= & \min _{x \in \mathbb{X}} \sum_{l \in S} b_{l}\left(x_{l}\right) \\
& \text { s.t. } x \in \mathbb{S}, x_{-S}=0
\end{aligned}
$$

$$
\underbrace{\left.\bar{u}_{\mathrm{CO}}+\sum_{l \in S} \bar{u}_{l} \geq-J\left(\mathcal{B}_{S}\right), \forall S \subset L\right\}}_{\begin{array}{c}
\text { no blocking } \\
\text { coalition }
\end{array}}
$$

Characterization of coalition-proof mechanisms

- Core-selecting payment rule

$$
p_{l}(\mathcal{B})=b_{l}\left(x_{l}^{*}(\mathcal{B})\right)+\bar{u}_{l}(\mathcal{B}), \forall l, \text { where } \bar{u} \in \operatorname{Core}(\mathcal{B})
$$

- Equivalently, revealed utilities lie in the core

Characterization of coalition-proof mechanisms

- Core-selecting payment rule

$$
p_{l}(\mathcal{B})=b_{l}\left(x_{l}^{*}(\mathcal{B})\right)+\bar{u}_{l}(\mathcal{B}), \forall l, \text { where } \bar{u} \in \operatorname{Core}(\mathcal{B})
$$

- Equivalently, revealed utilities lie in the core

Theorem 2
Core-selecting mechanisms \Longleftrightarrow Coalition-proof mechanisms

Characterization of coalition-proof mechanisms

- Core-selecting payment rule

$$
p_{l}(\mathcal{B})=b_{l}\left(x_{l}^{*}(\mathcal{B})\right)+\bar{u}_{l}(\mathcal{B}), \forall l, \text { where } \bar{u} \in \operatorname{Core}(\mathcal{B})
$$

- Equivalently, revealed utilities lie in the core

Theorem 2
Core-selecting mechanisms \Longleftrightarrow Coalition-proof mechanisms

- Pay-as-bid is core-selecting since

$$
\bar{u}_{l}^{\mathrm{PAB}}(\mathcal{B})=0, \forall l \in L, \quad \bar{u}_{\mathrm{CO}}^{\mathrm{PAB}}(\mathcal{B})=-J(\mathcal{B})
$$

Characterization of coalition-proof mechanisms

- Core-selecting payment rule

$$
p_{l}(\mathcal{B})=b_{l}\left(x_{l}^{*}(\mathcal{B})\right)+\bar{u}_{l}(\mathcal{B}), \forall l, \text { where } \bar{u} \in \operatorname{Core}(\mathcal{B})
$$

- Equivalently, revealed utilities lie in the core

Theorem 2
Core-selecting mechanisms \Longleftrightarrow Coalition-proof mechanisms

- Pay-as-bid is core-selecting since

$$
\bar{u}_{l}^{\mathrm{PAB}}(\mathcal{B})=0, \forall l \in L, \quad \bar{u}_{\mathrm{CO}}^{\mathrm{PAB}}(\mathcal{B})=-J(\mathcal{B}) \Longrightarrow \bar{u}^{\mathrm{PAB}} \in \operatorname{Core}(\mathcal{B})
$$

Characterization of coalition-proof mechanisms

- Core-selecting payment rule

$$
p_{l}(\mathcal{B})=b_{l}\left(x_{l}^{*}(\mathcal{B})\right)+\bar{u}_{l}(\mathcal{B}), \forall l, \text { where } \bar{u} \in \operatorname{Core}(\mathcal{B})
$$

- Equivalently, revealed utilities lie in the core

Theorem 2
Core-selecting mechanisms \Longleftrightarrow Coalition-proof mechanisms

- Pay-as-bid is core-selecting since

$$
\bar{u}_{l}^{\mathrm{PAB}}(\mathcal{B})=0, \forall l \in L, \quad \bar{u}_{\mathrm{CO}}^{\mathrm{PAB}}(\mathcal{B})=-J(\mathcal{B}) \Longrightarrow \bar{u}^{\mathrm{PAB}} \in \operatorname{Core}(\mathcal{B})
$$

- Core-selecting payments are upper bounded by the VCG payments

$$
\underbrace{\bar{u}_{l}^{\mathrm{VCG}}(\mathcal{B})}_{p_{l}^{\mathrm{VCG}}-b_{l}}=J\left(\mathcal{B}_{-l}\right)-J(\mathcal{B})=\max \left\{\bar{u}_{l} \mid \bar{u} \in \operatorname{Core}(\mathcal{B})\right\}
$$

Characterization of coalition-proof mechanisms

- Core-selecting payment rule

$$
p_{l}(\mathcal{B})=b_{l}\left(x_{l}^{*}(\mathcal{B})\right)+\bar{u}_{l}(\mathcal{B}), \forall l, \text { where } \bar{u} \in \operatorname{Core}(\mathcal{B})
$$

- Equivalently, revealed utilities lie in the core

Theorem 2
Core-selecting mechanisms \Longleftrightarrow Coalition-proof mechanisms

- Pay-as-bid is core-selecting since

$$
\bar{u}_{l}^{\mathrm{PAB}}(\mathcal{B})=0, \forall l \in L, \quad \bar{u}_{\mathrm{CO}}^{\mathrm{PAB}}(\mathcal{B})=-J(\mathcal{B}) \Longrightarrow \bar{u}^{\mathrm{PAB}} \in \operatorname{Core}(\mathcal{B})
$$

- Core-selecting payments are upper bounded by the VCG payments

$$
\bar{u}_{l}^{\mathrm{VCG}}(\mathcal{B})=J\left(\mathcal{B}_{-l}\right)-J(\mathcal{B})=\max \left\{\bar{u}_{l} \mid \bar{u} \in \operatorname{Core}(\mathcal{B})\right\}
$$

The VCG mechanism is in general not core-selecting!

Outline

Market framework and incentive-compatibility

Coalition-proofness using the core

Designing coalition-proof mechanisms

Numerical results

Core-selecting is in general not incentive-compatible and there are many points to choose from the core...

Can core-selecting mechanisms approximate incentive-compatibility while ensuring coalition-proofness?

Approximating incentive-compatibility using core-selecting

- We quantify the violation of incentive-compatibility under any core-selecting mechanism

Lemma 1
The maximum gain of bidder l by a unilateral deviation from its true cost is tightly upperbounded by

$$
\bar{u}_{l}^{V C G}\left(\mathcal{C}_{l}, \mathcal{B}_{-l}\right)-\bar{u}_{l}\left(\mathcal{C}_{l}, \mathcal{B}_{-l}\right)
$$

Approximating incentive-compatibility using core-selecting

- We quantify the violation of incentive-compatibility under any core-selecting mechanism

Lemma 1
The maximum gain of bidder l by a unilateral deviation from its true cost is tightly upperbounded by

$$
\bar{u}_{l}^{V C G}\left(\mathcal{C}_{l}, \mathcal{B}_{-l}\right)-\bar{u}_{l}\left(\mathcal{C}_{l}, \mathcal{B}_{-l}\right)
$$

- Idea: The closer you get to the VCG payments, the better you approximate incentive-compatibility

Maximum payment core-selecting mechanism

- Maximum payment core-selecting (MPCS) mechanism:

$$
\bar{u}^{\mathrm{MPCS}}(\mathcal{B})=\underset{\bar{u} \in \operatorname{Core}(\mathcal{B})}{\arg \min } \sum_{l \in L}\left(\bar{u}_{l}-\bar{u}_{l}^{\mathrm{VCG}}(\mathcal{B})\right)^{2}
$$

Theorem 3
The MPCS mechanism minimizes the sum of maximum gains from unilateral deviations

Maximum payment core-selecting mechanism

- Maximum payment core-selecting (MPCS) mechanism:

$$
\bar{u}^{\mathrm{MPCS}}(\mathcal{B})=\underset{\bar{u} \in \operatorname{Core}(\mathcal{B})}{\arg \min } \sum_{l \in L}\left(\bar{u}_{l}-\bar{u}_{l}^{\mathrm{VCG}}(\mathcal{B})\right)^{2}
$$

Theorem 3
The MPCS mechanism minimizes the sum of maximum gains from unilateral deviations

- Problem size is exponential in the number of bidders!
- Characterizing the core requires solutions to the market under $2^{|L|}$ subsets of bidders

$$
\begin{aligned}
& \operatorname{Core}(\mathcal{B})=\left\{\bar{u} \in \mathbb{R} \times \mathbb{R}_{+}^{|L|} \mid \bar{u}_{\mathrm{CO}}+\sum_{l \in L} \bar{u}_{l}\right.=-J(\mathcal{B}) \\
&\left.\bar{u}_{\mathrm{CO}}+\sum_{l \in S} \bar{u}_{l} \geq-J\left(\mathcal{B}_{S}\right), \forall S \subset L\right\} \\
& \text { Orçun Karaca }
\end{aligned}
$$

Maximum payment core-selecting mechanism

- Maximum payment core-selecting (MPCS) mechanism:

$$
\bar{u}^{\mathrm{MPCS}}(\mathcal{B})=\underset{\bar{u} \in \operatorname{Core}(\mathcal{B})}{\arg \min } \sum_{l \in L}\left(\bar{u}_{l}-\bar{u}_{l}^{\mathrm{VCG}}(\mathcal{B})\right)^{2}
$$

Theorem 3
The MPCS mechanism minimizes the sum of maximum gains from unilateral deviations

- Problem size is exponential in the number of bidders!
- Characterizing the core requires solutions to the market under $2^{|L|}$ subsets of bidders
- Can be tackled via iterative constraint generation [Dantzig et al. 1954], [Hallefjord et al. 1995]

Comparison of revealed utilities under different mechanisms

Comparison of revealed utilities under different mechanisms

The MPCS mechanism:

+ Approximate incentive-compatibility
+ Exact coalition-proofness and individual-rationality
+ Equivalent to the VCG if VCG is core-selecting

Comparison of revealed utilities under different mechanisms

The MPCS mechanism:

+ Approximate incentive-compatibility
+ Exact coalition-proofness and individual-rationality
+ Equivalent to the VCG if VCG is core-selecting

Comparison of revealed utilities under different mechanisms

The MPCS mechanism:

+ Approximate incentive-compatibility
+ Exact coalition-proofness and individual-rationality
+ Equivalent to the VCG if VCG is core-selecting
+ (Compared to LMP) Applicable to the general setting
- (Compared to LMP) Payments are nonlinear

We extend our model to exchanges (and two-sided markets)

Can we quantify the budget-balance of the MPCS mechanism?

Budget-balance in exchanges

- Exchange extends the domains of the functions to \mathbb{R}

$$
\begin{aligned}
& c_{l}: \mathbb{X}_{l} \rightarrow \mathbb{R} \text { such that } 0 \in \mathbb{X}_{1} \subset \mathbb{R} \text { and } c_{l}(0)=0 \\
& b_{l}: \hat{\mathbb{X}}_{l} \rightarrow \mathbb{R} \text { such that } 0 \in \hat{\mathbb{X}}_{1} \subset \mathbb{R} \text { and } b_{l}(0)=0
\end{aligned}
$$

- All the results hold in exchanges (e.g., coalition-proofness)

Budget-balance in exchanges

- Exchange extends the domains of the functions to \mathbb{R}

$$
\begin{aligned}
& c_{l}: \mathbb{X}_{l} \rightarrow \mathbb{R} \text { such that } 0 \in \mathbb{X}_{1} \subset \mathbb{R} \text { and } c_{l}(0)=0 \\
& b_{l}: \hat{\mathbb{X}}_{l} \rightarrow \mathbb{R} \text { such that } 0 \in \hat{\mathbb{X}}_{1} \subset \mathbb{R} \text { and } b_{l}(0)=0
\end{aligned}
$$

- All the results hold in exchanges (e.g., coalition-proofness)
- Another important property:
- Budget-balance: $u_{\mathrm{co}} \geq 0$ (Central operator's utility)

Budget-balance in exchanges

- Exchange extends the domains of the functions to \mathbb{R}

$$
\begin{aligned}
& c_{l}: \mathbb{X}_{l} \rightarrow \mathbb{R} \text { such that } 0 \in \mathbb{X}_{1} \subset \mathbb{R} \text { and } c_{l}(0)=0 \\
& b_{l}: \hat{\mathbb{X}}_{l} \rightarrow \mathbb{R} \text { such that } 0 \in \hat{\mathbb{X}}_{1} \subset \mathbb{R} \text { and } b_{l}(0)=0
\end{aligned}
$$

- All the results hold in exchanges (e.g., coalition-proofness)
- Another important property:
- Budget-balance: $u_{\mathrm{co}} \geq 0$ (Central operator's utility)
- The LMP mechanism is budget-balanced
- The VCG mechanism is not always budget-balanced [Myerson and Satterthwhite 1983], [Krishna and Perry 1998]

Budget-balance in exchanges

- Exchange extends the domains of the functions to \mathbb{R}

$$
\begin{aligned}
& c_{l}: \mathbb{X}_{l} \rightarrow \mathbb{R} \text { such that } 0 \in \mathbb{X}_{l} \subset \mathbb{R} \text { and } c_{l}(0)=0 \\
& b_{l}: \hat{\mathbb{X}}_{l} \rightarrow \mathbb{R} \text { such that } 0 \in \hat{\mathbb{X}}_{l} \subset \mathbb{R} \text { and } b_{l}(0)=0
\end{aligned}
$$

- All the results hold in exchanges (e.g., coalition-proofness)
- Another important property:
- Budget-balance: $u_{\mathrm{co}} \geq 0$ (Central operator's utility)
- The LMP mechanism is budget-balanced
- The VCG mechanism is not always budget-balanced [Myerson and Satterthwhite 1983], [Krishna and Perry 1998]

Theorem 4
Any core-selecting mechanism is budget-balanced

Outline

Market framework and incentive-compatibility

Coalition-proofness using the core

Designing coalition-proof mechanismis

Numerical results

Swiss reserve procurement auctions

- Two-stage stochastic weekly market for secondary and tertiary reserves [Abbaspourtobati and Zima 2016]
- Mutually exclusive bids are submitted

$$
\begin{aligned}
J(\mathcal{B})= & \min _{x \in \hat{\mathbb{X}}, y} \sum_{l \in L} b_{l}\left(x_{l}\right)+d(y) \\
& \text { s.t. } g(x, y) \leq 0
\end{aligned}
$$

- $x \in \hat{\mathbb{X}}$: Power to be purchased in the weekly market
- $y \in \mathbb{R}_{+}^{p}$: Power to be purchased in the daily market
- $d: \mathbb{R}_{+}^{p} \rightarrow \mathbb{R}$: Expected daily market cost
- Reserves ensure a deficit probability of less than 0.2%

Swiss reserve procurement auctions

- Based on 2014 data-67 bidders

Table: Total payments of the two-stage auction

Total Pay-as-bid payment	2.293 million CHF
Total MPCS payment	2.437 million CHF
Total VCG payment	2.529 million CHF

- Computation times for different mechanisms
- VCG: 580.6 seconds
- MPCS: 659.2 seconds

IEEE test systems with power flow constraints

Table: Total payment in the IEEE test systems

Mechanism	14-bus, line limits	118-bus, no line limits
Pay-as-bid	$\$ 9715.2$	$\$ 125947.8$
Loc. marg. pricing	$\$ 10361.0$	$\$ 167055.8$
MPCS	$\$ 11220.1$	$\$ 169300.4$
VCG	$\$ 11432.1$	$\$ 169300.4$

- VCG is core-selecting when there are no line limits!
- Similar results are obtained for other IEEE test systems

Two-sided markets with power flow constraints

Two-sided markets with power flow constraints

Table: Budget-balance comparison

	Pay-as-bid	LMP	MPCS	VCG
u_{CO}	$\$ 48.3$	$\$ 2.8$	$\$ 0$	$-\$ 34.8$

Conclusion

- Summary
- Studied the VCG mechanism and showed its theoretical virtues
- Characterized coalition-proof mechanisms as core-selecting
- Designed coalition-proof mechanisms approximating incentive-compatibility
- Analyzed budget-balance of the proposed mechanisms
- Verified with optimal power flow test systems and Swiss reserve market
- Outlook
- Privacy (bidders might not want to share the true costs...)
- Learning in a repeated setting
- Spatial and intertemporal coordination of markets

Thank you for your attention

The results from this talk appear in

- Karaca and Kamgarpour, IEEE CDC 2017
- Karaca and Kamgarpour, IEEE CDC 2018
- Karaca et al., IEEE TAC 2019
- Karaca and Kamgarpour, under review, ArXiv:1811.09646

You may contact me: okaraca@ethz.ch

