Designing Incentive-Compatible and Coalition-Proof Payment Mechanisms for Electricity Markets

Orcun Karaca joint work with Prof. M. Kamgarpour

Institut für Automatik, ETH Zürich

Frontiers in Energy Research April 16th, 2019, Zürich, Switzerland

- Transformation to deregulated competitive markets
- Stability: Supply and demand balance at every instance

- Transformation to deregulated competitive markets
- Stability: Supply and demand balance at every instance

Stability: Supply and demand balance at every instance

Example 1: Control reserves market

Different supplies depending on speed and direction (sign)

Involves probabilistic dimensioning criteria

Example 1: Control reserves market

Different supplies depending on speed and direction (sign)

Involves probabilistic dimensioning criteria

- Different supplies depending on bus/node
- Considers the physics behind the transmission network

- Different supplies depending on bus/node
- Considers the physics behind the transmission network

- Different supplies depending on bus/node
- Considers the physics behind the transmission network

- Different supplies depending on bus/node
- Considers the physics behind the transmission network

Market design criteria

Efficiency: Immunity to strategic manipulations

Market design criteria

Efficiency: Immunity to strategic manipulations

How can we **eliminate strategic manipulations** to achieve a stable and an efficient grid?

Outline

Market framework and incentive-compatibility

Coalition-proofness using the core

Designing coalition-proof mechanisms

Numerical results

Outline

Market framework and incentive-compatibility

Coalition-proofness using the core

Designing coalition-proof mechanisms

Numerical results

Electricity market framework

Wholesale electricity markets, control reserve markets, and many others; generalization of reverse auctions

Electricity market framework

Wholesale electricity markets, control reserve markets, and many others; generalization of reverse auctions

Electricity market framework

Wholesale electricity markets, control reserve markets, and many others; generalization of reverse auctions

Utility of CO = - Total payment

Procure 800 MWh from 2 generators by minimizing the cost

Procure 800 MWh from 2 generators by minimizing the cost

Payment rule: pay winners their bid

Procure 800 MWh from 2 generators by minimizing the cost

Payment rule: pay winners their bid

Procure 800 MWh from 2 generators by minimizing the cost

- Payment rule: pay winners their bid
- Bid very large, hard to predict

Vickrey auction and its desirable properties

► Payment rule: pay the 2nd price

Vickrey auction and its desirable properties

▶ Payment rule: pay the 2nd price

Vickrey auction and its desirable properties

▶ Payment rule: pay the 2nd price

Incentive-compatible: truthfulness is the dominant-strategy [Vickrey 1961] How do we ensure incentive-compatibility for complex electricity markets?

Allocation rule as an optimization problem

Private true cost of bidder l

 $c_l: \mathbb{X}_l \to \mathbb{R}_+$ such that $0 \in \mathbb{X}_l \subset \mathbb{R}_+$ and $c_l(0) = 0$

Reported cost of bidder l

 $b_l : \hat{\mathbb{X}}_l \to \mathbb{R}_+$ such that $0 \in \hat{\mathbb{X}}_l \subset \mathbb{R}_+$ and $b_l(0) = 0$

Allocation rule as an optimization problem

 $c_l: \mathbb{X}_l \to \mathbb{R}_+$ such that $0 \in \mathbb{X}_l \subset \mathbb{R}_+$ and $c_l(0) = 0$

Reported cost of bidder l

 $b_l: \hat{\mathbb{X}}_l \to \mathbb{R}_+$ such that $0 \in \hat{\mathbb{X}}_l \subset \mathbb{R}_+$ and $b_l(0) = 0$

The central operator solves for the economic dispatch

$$J(\mathcal{B}) = \min_{x \in \hat{\mathbb{X}}} \sum_{l \in L} b_l(x_l)$$

s.t. $x \in \mathbb{S}$

• Production limits $\hat{\mathbb{X}} = \hat{\mathbb{X}}_1 \times \cdots \times \hat{\mathbb{X}}_{|L|}$

• Market constraints $\mathbb{S} \subset \mathbb{R}^{|L|}_+$ —*e.g.*, security constraints

Updating the framework with the allocation rule

Updating the framework with the allocation rule

• Bidder's utility: $u_l(\mathcal{B}) = p_l(\mathcal{B}) - c_l(x_l^*(\mathcal{B}))$

Updating the framework with the allocation rule

• CO's utility: $u_{CO}(\mathcal{B}) = -\sum_{l \in L} p_l(\mathcal{B})$

- Individually rational: Nonnegative utilities for bidders
- Efficient: Sum of all utilities is maximized

$$\underbrace{u_{\mathsf{CO}}(\mathcal{B}) + \sum_{l \in L} u_l(\mathcal{B})}_{\text{maximize}} = -\underbrace{\sum_{l \in L} c_l(x_l^*(\mathcal{B}))}_{\text{minimize}}$$

- Individually rational: Nonnegative utilities for bidders
- *Efficient:* Sum of all utilities is maximized
- Incentive-compatible: Truthfulness is the dominant strategy

- Individually rational: Nonnegative utilities for bidders
- Efficient: Sum of all utilities is maximized
- Incentive-compatible: Truthfulness is the dominant strategy
- Widely used mechanisms

Pay-as-bid mechanism:

$$p_l(\mathcal{B}) = b_l(x_l^*(\mathcal{B}))$$

Locational marginal pricing (LMP) mechanism:

$$p_l(\mathcal{B}) = \lambda_l^*(\mathcal{B}) x_l^*(\mathcal{B})$$

- ► √ Individually rational: Nonnegative utilities for bidders
- Efficient: Sum of all utilities is maximized
- X Incentive-compatible: Truthfulness is the dominant strategy
- Widely used mechanisms

Pay-as-bid mechanism:

$$p_l(\mathcal{B}) = b_l(x_l^*(\mathcal{B}))$$

Locational marginal pricing (LMP) mechanism:

$$p_l(\mathcal{B}) = \lambda_l^*(\mathcal{B}) x_l^*(\mathcal{B})$$

Not incentive-compatible, not efficient!

- ► √ Individually rational: Nonnegative utilities for bidders
- Efficient: Sum of all utilities is maximized
- X Incentive-compatible: Truthfulness is the dominant strategy
- Widely used mechanisms

Pay-as-bid mechanism:

$$p_l(\mathcal{B}) = b_l(x_l^*(\mathcal{B}))$$

Locational marginal pricing (LMP) mechanism:

$$p_l(\mathcal{B}) = \lambda_l^*(\mathcal{B}) x_l^*(\mathcal{B})$$

Not incentive-compatible, not efficient!

Manipulations risk the stability of the grid [Wolfram 1997], [Joskow 2001]

DC power flow model with identical lossless lines:

 $\theta_i - \theta_j$: Power flow from Node i to Node j $\exists \theta \in \mathbb{R}^n$ such that $x_i - D_i = \sum_j \theta_i - \theta_j$: λ_i _{Lagrange M.}, $\forall i$ (Nodal Balance)

DC power flow model with identical lossless lines:

 $\theta_i - \theta_j$: Power flow from Node i to Node j $\exists \theta \in \mathbb{R}^n$ such that $x_i - D_i = \sum_j \theta_i - \theta_j$: λ_i _{Lagrange M.}, $\forall i$ (Nodal Balance)

DC power flow model with identical lossless lines:

 $\begin{array}{l} \theta_i - \theta_j : \text{Power flow from Node } i \text{ to Node } j \\ \exists \theta \in \mathbb{R}^n \text{ such that } x_i - D_i = \sum_j \theta_i - \theta_j : \underbrace{\lambda_i}_{\text{Lagrange M.}}, \ \forall i \quad (\text{Nodal Balance}) \\ \theta_i - \theta_j \leq C_{ij}, \ \forall i, j \qquad (\text{Line Limits}) \end{array}$

Table: LMP outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding		
	p (u)	x	
Generator 1	0 (0)	0	
Generator 2	0 (0)	0	
Generator 3	180 (40)	20	

$$p_3 = \lambda_3 \times x_3 = 9 \times 20$$

Table: LMP outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding		Generator 3 deviates		
	p (u)	x	p (u)	x	
Generator 1	0 (0)	0			
Generator 2	0 (0)	0			
Generator 3	180 (40)	20			

Table: LMP outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding		Generator 3 deviates		
	p (u)	x	p (u)	x	
Generator 1	0 (0)	0			
Generator 2	0 (0)	0			
Generator 3	180 (40)	20			

Table: LMP outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding		Generator 3 deviates	
	p (u)	x	p (u)	x
Generator 1	0 (0)	0	0 (0)	0
Generator 2	0 (0)	0	0 (0)	0
Generator 3	180 (40)	20	240 (100)	20

Table: LMP outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding		Generator 3 deviates	
	p (u)	x	p (u)	x
Generator 1	0 (0)	0	0 (0)	0
Generator 2	0 (0)	0	0 (0)	0
Generator 3	180 (40)	20	240 (100)	20

Under LMP, unilateral deviation is profitable for bidders

[Vickrey 1961], [Clarke 1971], [Groves 1973]

Define optimal value of (CO) without bidder l

 $J(\mathcal{B}_{-l}) \ge J(\mathcal{B})$

where

$$J(\mathcal{B}_{-l}) = \min_{x \in \hat{\mathbb{X}}} \sum_{l \in L} b_l(x_l)$$

s.t. $x \in \mathbb{S}, x_l = 0$

[Vickrey 1961], [Clarke 1971], [Groves 1973]

Define optimal value of (CO) without bidder l

 $J(\mathcal{B}_{-l}) \ge J(\mathcal{B})$

[Vickrey 1961], [Clarke 1971], [Groves 1973]

Define optimal value of (CO) without bidder l

 $J(\mathcal{B}_{-l}) \ge J(\mathcal{B})$

VCG payment is the externality

[Vickrey 1961], [Clarke 1971], [Groves 1973]

Define optimal value of (CO) without bidder l

 $J(\mathcal{B}_{-l}) \ge J(\mathcal{B})$

VCG payment is the externality

Theorem 1 Given (CO), the VCG mechanism is

- a) Incentive-compatible
- b) Efficient
- c) Individually rational

[Vickrey 1961], [Clarke 1971], [Groves 1973]

Define optimal value of (CO) without bidder l

 $J(\mathcal{B}_{-l}) \geq J(\mathcal{B})$

VCG payment is the externality

Theorem 1 Given (CO), the VCG mechanism is

- a) Incentive-compatible
- b) Efficient
- c) Individually rational

Generalization of the 2nd price mechanism

Table: VCG outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding		
	p (u)	x	
Generator 1	0 (0)	0	
Generator 2	0 (0)	0	
Generator 3	260(120)	20	

$$p_3 = J(\mathcal{B}_{-3}) - (J(\mathcal{B}) - b_3(x_3^*(\mathcal{B})))$$

Table: VCG outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding		
	p (u)	x	
Generator 1	0 (0)	0	
Generator 2	0 (0)	0	
Generator 3	260(120)	20	

$$p_3 = 260 - (140 - 140) = 260$$

Table: VCG outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding		
	p (u)	x	
Generator 1	0 (0)	0	
Generator 2	0 (0)	0	
Generator 3	260(120)	20	

Truthful bidding is the dominant strategy

Table: VCG outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding		1 and 2 collude	
	p (u)	x	p (u)	x
Generator 1	0 (0)	0		
Generator 2	0 (0)	0		
Generator 3	260 (120)	20		

Table: VCG outcomes for the model (CHF) (p: payment, u: utility)

	Truthful Bidding		1 and 2 collude	
	p (u)	x	p (u)	x
Generator 1	0 (0)	0	140 (10)	10
Generator 2	0 (0)	0	140 (10)	10
Generator 3	260 (120)	20	0 (0)	0

Coalition-proofness

- Joint deviation is not profitable for losing bidders
- Bidding with multiple identities is not profitable for any bidder

Which mechanisms attain the **coalition-proofness** property?

Outline

Market framework and incentive-compatibility

Coalition-proofness using the core

Designing coalition-proof mechanisms

Numerical results

Orçun Karaca 19 / 36

▶ Bidder's utility: $u_l(\mathcal{B}) = p_l(\mathcal{B}) - c_l(x_l^*(\mathcal{B}))$

Central operator's utility:

$$u_{\mathsf{CO}}(\mathcal{B}) = -\sum_{l \in L} p_l(\mathcal{B})$$

- ▶ Bidder's *revealed* utility: $\bar{u}_l(\mathcal{B}) = p_l(\mathcal{B}) b_l(x_l^*(\mathcal{B}))$
- Central operator's *revealed* utility:

$$\bar{u}_{\mathsf{CO}}(\mathcal{B}) = -\sum_{l \in L} p_l(\mathcal{B})$$

- ▶ Bidder's *revealed* utility: $\bar{u}_l(\mathcal{B}) = p_l(\mathcal{B}) b_l(x_l^*(\mathcal{B}))$
- Central operator's revealed utility:

$$\bar{u}_{\mathsf{CO}}(\mathcal{B}) = -\sum_{l \in L} p_l(\mathcal{B})$$

▶ Objective value under the profile $\mathcal{B}_S = \{b_l\}_{l \in S}$, $S \subseteq L$

$$J(\mathcal{B}_S) = \min_{x \in \hat{\mathbb{X}}} \sum_{l \in S} b_l(x_l)$$

s.t. $x \in \mathbb{S}, x_{-S} = 0$

- ▶ Bidder's *revealed* utility: $\bar{u}_l(\mathcal{B}) = p_l(\mathcal{B}) b_l(x_l^*(\mathcal{B}))$
- Central operator's *revealed* utility:

$$\bar{u}_{\mathsf{CO}}(\mathcal{B}) = -\sum_{l \in L} p_l(\mathcal{B})$$

$$J(\mathcal{B}_S) = \min_{x \in \hat{\mathbb{X}}} \sum_{l \in S} b_l(x_l)$$

s.t. $x \in \mathbb{S}, x_{-S} = 0$

- ▶ Bidder's *revealed* utility: $\bar{u}_l(\mathcal{B}) = p_l(\mathcal{B}) b_l(x_l^*(\mathcal{B}))$
- Central operator's *revealed* utility:

$$\bar{u}_{\mathsf{CO}}(\mathcal{B}) = -\sum_{l \in L} p_l(\mathcal{B})$$

$$J(\mathcal{B}_S) = \min_{x \in \mathbb{X}} \sum_{l \in S} b_l(x_l)$$

s.t. $x \in \mathbb{S}, x_{-S} = 0$

- ▶ Bidder's *revealed* utility: $\bar{u}_l(\mathcal{B}) = p_l(\mathcal{B}) b_l(x_l^*(\mathcal{B}))$
- Central operator's revealed utility:

$$\bar{u}_{\mathsf{CO}}(\mathcal{B}) = -\sum_{l \in L} p_l(\mathcal{B})$$

$$Core(\mathcal{B}) = \left\{ \bar{u} \in \mathbb{R} \times \underbrace{\mathbb{R}_{+}^{|L|}}_{i \in \mathbb{C}} \mid \underbrace{\bar{u}_{\mathsf{CO}} + \sum_{l \in L} \bar{u}_{l} = -J(\mathcal{B})}_{\bar{u}_{\mathsf{CO}} + \sum_{l \in S} \bar{u}_{l} \geq -J(\mathcal{B}_{S}), \forall S \subset L \right\}$$

$$J(\mathcal{B}_S) = \min_{x \in \hat{\mathbb{X}}} \sum_{l \in S} b_l(x_l)$$

s.t. $x \in \mathbb{S}, x_{-S} = 0$

- ▶ Bidder's *revealed* utility: $\bar{u}_l(\mathcal{B}) = p_l(\mathcal{B}) b_l(x_l^*(\mathcal{B}))$
- Central operator's revealed utility:

$$\bar{u}_{\mathsf{CO}}(\mathcal{B}) = -\sum_{l \in L} p_l(\mathcal{B})$$

$$Core(\mathcal{B}) = \left\{ \bar{u} \in \mathbb{R} \times \underbrace{\mathbb{R}_{+}^{|L|}}_{\substack{\text{individ.} \\ \text{rational}}} \mid \underline{\bar{u}_{\text{CO}} + \sum_{l \in L} \bar{u}_{l} = -J(\mathcal{B}), \\ \underline{\bar{u}_{\text{CO}} + \sum_{l \in S} \bar{u}_{l} \geq -J(\mathcal{B}_{S}), \forall S \subset L} \right\}$$

$$\overline{J(\mathcal{B}_{S}) = \min_{x \in \bar{\mathbb{X}}} \sum_{l \in S} b_{l}(x_{l})}_{\text{s.t. } x \in \mathbb{S}, x_{-S} = 0}$$

- ▶ Bidder's *revealed* utility: $\bar{u}_l(\mathcal{B}) = p_l(\mathcal{B}) b_l(x_l^*(\mathcal{B}))$
- Central operator's revealed utility:

$$\bar{u}_{\mathsf{CO}}(\mathcal{B}) = -\sum_{l \in L} p_l(\mathcal{B})$$

$$Core(\mathcal{B}) = \left\{ \bar{u} \in \mathbb{R} \times \underbrace{\mathbb{R}^{|L|}_{+}}_{\text{individ.}} \mid \underbrace{\bar{u}_{CO} + \sum_{l \in L} \bar{u}_{l} = -J(\mathcal{B})}_{\text{efficient}}, \underbrace{\bar{u}_{CO} + \sum_{l \in S} \bar{u}_{l} \ge -J(\mathcal{B}_{S}), \forall S \subset L}_{l \in S} \right\}$$

$$J(\mathcal{B}_S) = \min_{x \in \hat{\mathbb{X}}} \sum_{l \in S} b_l(x_l)$$

s.t. $x \in \mathbb{S}, x_{-S} = 0$

- ▶ Bidder's *revealed* utility: $\bar{u}_l(\mathcal{B}) = p_l(\mathcal{B}) b_l(x_l^*(\mathcal{B}))$
- Central operator's revealed utility:

$$\bar{u}_{\mathsf{CO}}(\mathcal{B}) = -\sum_{l \in L} p_l(\mathcal{B})$$

$$Core(\mathcal{B}) = \left\{ \bar{u} \in \mathbb{R} \times \underbrace{\mathbb{R}_{+}^{|L|}}_{\substack{\text{individ.} \\ rational}} \mid \underbrace{\bar{u}_{CO} + \sum_{l \in L} \bar{u}_l = -J(\mathcal{B})}_{\text{efficient}}, \\ \underline{\bar{u}_{CO} + \sum_{l \in S} \bar{u}_l \geq -J(\mathcal{B}_S)}_{\text{s.t. } x \in \mathbb{S}, x_{-S} = 0} \right\}$$

Core-selecting payment rule

 $p_l(\mathcal{B}) = b_l(x_l^*(\mathcal{B})) + \bar{u}_l(\mathcal{B}), \forall l, \text{ where } \bar{u} \in Core(\mathcal{B})$

Equivalently, revealed utilities lie in the core

Core-selecting payment rule

 $p_l(\mathcal{B}) = b_l(x_l^*(\mathcal{B})) + \bar{u}_l(\mathcal{B}), \, \forall l, \text{ where } \bar{u} \in Core(\mathcal{B})$

Equivalently, revealed utilities lie in the core

Theorem 2

 $\textit{Core-selecting mechanisms} \Longleftrightarrow \textit{Coalition-proof mechanisms}$

Core-selecting payment rule

 $p_l(\mathcal{B}) = b_l(x_l^*(\mathcal{B})) + \bar{u}_l(\mathcal{B}), \, \forall l, \text{ where } \bar{u} \in Core(\mathcal{B})$

Equivalently, revealed utilities lie in the core

Theorem 2

Core-selecting mechanisms \iff Coalition-proof mechanisms

Pay-as-bid is core-selecting since

$$\bar{u}_l^{\mathsf{PAB}}(\mathcal{B}) = 0, \, \forall l \in L, \ \ \bar{u}_{\mathsf{CO}}^{\mathsf{PAB}}(\mathcal{B}) = -J(\mathcal{B})$$

Core-selecting payment rule

 $p_l(\mathcal{B}) = b_l(x_l^*(\mathcal{B})) + \bar{u}_l(\mathcal{B}), \, \forall l, \text{ where } \bar{u} \in Core(\mathcal{B})$

Equivalently, revealed utilities lie in the core

Theorem 2 Core-selecting mechanisms \iff Coalition-proof mechanisms

Pay-as-bid is core-selecting since

 $\bar{u}_l^{\mathsf{PAB}}(\mathcal{B}) = 0, \, \forall l \in L, \ \ \bar{u}_{\mathsf{CO}}^{\mathsf{PAB}}(\mathcal{B}) = -J(\mathcal{B}) \implies \bar{u}^{\mathsf{PAB}} \in Core(\mathcal{B})$
Characterization of coalition-proof mechanisms

Core-selecting payment rule

 $p_l(\mathcal{B}) = b_l(x_l^*(\mathcal{B})) + \bar{u}_l(\mathcal{B}), \, \forall l, \text{ where } \bar{u} \in Core(\mathcal{B})$

Equivalently, revealed utilities lie in the core

Theorem 2 Core-selecting mechanisms \iff Coalition-proof mechanisms

Pay-as-bid is core-selecting since

 $\bar{u}_l^{\mathsf{PAB}}(\mathcal{B}) = 0, \, \forall l \in L, \ \ \bar{u}_{\mathsf{CO}}^{\mathsf{PAB}}(\mathcal{B}) = -J(\mathcal{B}) \implies \bar{u}^{\mathsf{PAB}} \in Core(\mathcal{B})$

Core-selecting payments are upper bounded by the VCG payments

$$\underbrace{\bar{u}_{l}^{\mathsf{VCG}}(\mathcal{B})}_{p_{l}^{\mathsf{VCG}}-b_{l}} = J(\mathcal{B}_{-l}) - J(\mathcal{B}) = \max\left\{\bar{u}_{l} \mid \bar{u} \in Core(\mathcal{B})\right\}$$

Characterization of coalition-proof mechanisms

Core-selecting payment rule

 $p_l(\mathcal{B}) = b_l(x_l^*(\mathcal{B})) + \bar{u}_l(\mathcal{B}), \, \forall l, \text{ where } \bar{u} \in Core(\mathcal{B})$

Equivalently, revealed utilities lie in the core

Theorem 2 Core-selecting mechanisms \iff Coalition-proof mechanisms

Pay-as-bid is core-selecting since

 $\bar{u}_l^{\mathsf{PAB}}(\mathcal{B}) = 0, \, \forall l \in L, \ \ \bar{u}_{\mathsf{CO}}^{\mathsf{PAB}}(\mathcal{B}) = -J(\mathcal{B}) \implies \bar{u}^{\mathsf{PAB}} \in Core(\mathcal{B})$

► Core-selecting payments are upper bounded by the VCG payments $\bar{u}_l^{\text{VCG}}(\mathcal{B}) = J(\mathcal{B}_{-l}) - J(\mathcal{B}) = \max{\{\bar{u}_l \mid \bar{u} \in Core(\mathcal{B})\}}$

The VCG mechanism is in general not core-selecting!

Outline

Market framework and incentive-compatibility

Coalition-proofness using the core

Designing coalition-proof mechanisms

Numerical results

Orçun Karaca 23 / 36

Core-selecting is in general **not incentive-compatible** and there are **many points** to choose from the core...

Can core-selecting mechanisms **approximate incentive-compatibility** while ensuring coalition-proofness? Approximating incentive-compatibility using core-selecting

We quantify the violation of incentive-compatibility under any core-selecting mechanism

Lemma 1

The maximum gain of bidder *l* by a unilateral deviation from its true cost is tightly upperbounded by

$$\bar{u}_l^{VCG}(\mathcal{C}_l, \mathcal{B}_{-l}) - \bar{u}_l(\mathcal{C}_l, \mathcal{B}_{-l})$$

Approximating incentive-compatibility using core-selecting

We quantify the violation of incentive-compatibility under any core-selecting mechanism

Lemma 1

The maximum gain of bidder *l* by a unilateral deviation from its true cost is tightly upperbounded by

$$\bar{u}_l^{VCG}(\mathcal{C}_l, \mathcal{B}_{-l}) - \bar{u}_l(\mathcal{C}_l, \mathcal{B}_{-l})$$

Idea: The closer you get to the VCG payments, the better you approximate incentive-compatibility

Maximum payment core-selecting mechanism

► *Maximum payment core-selecting* (MPCS) mechanism:

$$\bar{u}^{\mathsf{MPCS}}(\mathcal{B}) = \underset{\bar{u}\in\mathsf{Core}(\mathcal{B})}{\operatorname{arg\,min}} \sum_{l\in L} \left(\bar{u}_l - \bar{u}_l^{\mathsf{VCG}}(\mathcal{B}) \right)^2$$

Theorem 3

The MPCS mechanism minimizes the sum of maximum gains from unilateral deviations

Maximum payment core-selecting mechanism

► *Maximum payment core-selecting* (MPCS) mechanism:

$$\bar{u}^{\mathsf{MPCS}}(\mathcal{B}) = \underset{\bar{u}\in\mathsf{Core}(\mathcal{B})}{\arg\min} \sum_{l\in L} \left(\bar{u}_l - \bar{u}_l^{\mathsf{VCG}}(\mathcal{B}) \right)^2$$

Theorem 3

The MPCS mechanism minimizes the sum of maximum gains from unilateral deviations

- Problem size is exponential in the number of bidders!
 - Characterizing the core requires solutions to the market under 2^{|L|} subsets of bidders

$$Core(\mathcal{B}) = \left\{ ar{u} \in \mathbb{R} imes \mathbb{R}^{|L|}_+ | \ ar{u}_{\mathsf{CO}} + \sum_{l \in L} ar{u}_l = -J(\mathcal{B}), \ ar{u}_{\mathsf{CO}} + \sum_{l \in S} ar{u}_l \ge -J(\mathcal{B}_S), \ \forall S \subset L
ight\}$$

36

Maximum payment core-selecting mechanism

► *Maximum payment core-selecting* (MPCS) mechanism:

$$\bar{u}^{\mathsf{MPCS}}(\mathcal{B}) = \underset{\bar{u}\in\mathsf{Core}(\mathcal{B})}{\arg\min} \sum_{l\in L} \left(\bar{u}_l - \bar{u}_l^{\mathsf{VCG}}(\mathcal{B}) \right)^2$$

Theorem 3

The MPCS mechanism minimizes the sum of maximum gains from unilateral deviations

- Problem size is exponential in the number of bidders!
 - Characterizing the core requires solutions to the market under 2^{|L|} subsets of bidders
 - Can be tackled via iterative constraint generation [Dantzig et al. 1954], [Hallefjord et al. 1995]

The MPCS mechanism:

- + Approximate incentive-compatibility
- + Exact coalition-proofness and individual-rationality
- $+\,$ Equivalent to the VCG if VCG is core-selecting

The MPCS mechanism:

- + Approximate incentive-compatibility
- + Exact coalition-proofness and individual-rationality
- $+\,$ Equivalent to the VCG if VCG is core-selecting

The MPCS mechanism:

- + Approximate incentive-compatibility
- + Exact coalition-proofness and individual-rationality
- + Equivalent to the VCG if VCG is core-selecting
- + (Compared to LMP) Applicable to the general setting
- (Compared to LMP) Payments are nonlinear

We extend our model to **exchanges** (and two-sided markets)

Can we quantify the **budget-balance** of the MPCS mechanism?

 \blacktriangleright Exchange extends the domains of the functions to $\mathbb R$

$$c_l : \mathbb{X}_l \to \mathbb{R}$$
 such that $0 \in \mathbb{X}_l \subset \mathbb{R}$ and $c_l(0) = 0$
 $b_l : \hat{\mathbb{X}}_l \to \mathbb{R}$ such that $0 \in \hat{\mathbb{X}}_l \subset \mathbb{R}$ and $b_l(0) = 0$

All the results hold in exchanges (e.g., coalition-proofness)

• Exchange extends the domains of the functions to $\mathbb R$

$$c_l: \mathbb{X}_l \to \mathbb{R}$$
 such that $0 \in \mathbb{X}_l \subset \mathbb{R}$ and $c_l(0) = 0$

 $b_l : \hat{\mathbb{X}}_l \to \mathbb{R}$ such that $0 \in \hat{\mathbb{X}}_l \subset \mathbb{R}$ and $b_l(0) = 0$

All the results hold in exchanges (e.g., coalition-proofness)

Another important property:

• Budget-balance: $u_{CO} \ge 0$ (Central operator's utility)

• Exchange extends the domains of the functions to $\mathbb R$

$$c_l : \mathbb{X}_l \to \mathbb{R}$$
 such that $0 \in \mathbb{X}_l \subset \mathbb{R}$ and $c_l(0) = 0$

 $b_l: \hat{\mathbb{X}}_l \to \mathbb{R}$ such that $0 \in \hat{\mathbb{X}}_l \subset \mathbb{R}$ and $b_l(0) = 0$

All the results hold in exchanges (e.g., coalition-proofness)

Another important property:

• Budget-balance: $u_{CO} \ge 0$ (Central operator's utility)

- The LMP mechanism is budget-balanced
- The VCG mechanism is not always budget-balanced [Myerson and Satterthwhite 1983], [Krishna and Perry 1998]

 $\blacktriangleright\,$ Exchange extends the domains of the functions to $\mathbb R$

$$c_l: \mathbb{X}_l \to \mathbb{R}$$
 such that $0 \in \mathbb{X}_l \subset \mathbb{R}$ and $c_l(0) = 0$

 $b_l: \hat{\mathbb{X}}_l \to \mathbb{R}$ such that $0 \in \hat{\mathbb{X}}_l \subset \mathbb{R}$ and $b_l(0) = 0$

All the results hold in exchanges (e.g., coalition-proofness)

Another important property:

• Budget-balance: $u_{CO} \ge 0$ (Central operator's utility)

- The LMP mechanism is budget-balanced
- The VCG mechanism is not always budget-balanced [Myerson and Satterthwhite 1983]. [Krishna and Perry 1998]

Theorem 4

Any core-selecting mechanism is budget-balanced

Outline

Market framework and incentive-compatibility

Coalition-proofness using the core

Designing coalition-proof mechanisms

Numerical results

Swiss reserve procurement auctions

- Two-stage stochastic weekly market for secondary and tertiary reserves [Abbaspourtobati and Zima 2016]
- Mutually exclusive bids are submitted

$$J(\mathcal{B}) = \min_{x \in \hat{\mathbb{X}}, y} \sum_{l \in L} b_l(x_l) + d(y)$$

s.t. $g(x, y) \le 0$

- ▶ $x \in \hat{X}$: Power to be purchased in the weekly market
- ▶ $y \in \mathbb{R}^p_+$: Power to be purchased in the daily market
- $d: \mathbb{R}^p_+ \to \mathbb{R}$: Expected daily market cost
- Reserves ensure a deficit probability of less than 0.2%

Swiss reserve procurement auctions

Based on 2014 data—67 bidders

Table: Total payments of the two-stage auction

Total Pay-as-bid payment	2.293 million CHF
Total MPCS payment	2.437 million CHF
Total VCG payment	2.529 million CHF

Computation times for different mechanisms

- ► VCG: 580.6 seconds
- ▶ MPCS: 659.2 seconds

IEEE test systems with power flow constraints

Table: Total payment in the IEEE test systems

Mechanism	14-bus, line limits	118-bus, no line limits	
Pay-as-bid	\$9715.2	\$125947.8	
Loc. marg. pricing	\$10361.0	\$167055.8	
MPCS	\$11220.1	\$169300.4	
VCG	\$11432.1	\$169300.4	

- VCG is core-selecting when there are no line limits!
- Similar results are obtained for other IEEE test systems

Two-sided markets with power flow constraints

Two-sided markets with power flow constraints

Table: Budget-balance comparison

	Pay-as-bid	LMP	MPCS	VCG
u_{CO}	\$48.3	\$2.8	\$0	-\$34.8

Conclusion

Summary

- Studied the VCG mechanism and showed its theoretical virtues
- Characterized coalition-proof mechanisms as core-selecting
- Designed coalition-proof mechanisms approximating incentive-compatibility
- Analyzed budget-balance of the proposed mechanisms
- Verified with optimal power flow test systems and Swiss reserve market

Outlook

- Privacy (bidders might not want to share the true costs...)
- Learning in a repeated setting
- Spatial and intertemporal coordination of markets

Thank you for your attention

The results from this talk appear in

- Karaca and Kamgarpour, IEEE CDC 2017
- Karaca and Kamgarpour, IEEE CDC 2018
- ► Karaca et al., IEEE TAC 2019
- ► Karaca and Kamgarpour, under review, ArXiv:1811.09646

You may contact me: okaraca@ethz.ch