

Hydro-abrasion at hydraulic structures and steep bedrock rivers

Frontiers in Energy Research

Dila Demiral, Dr. Ismail Albayrak, Prof. Dr. Robert Boes 07.05.2019

Outline

- Introduction
 - Reservoirs
 - Reservoir sedimentation
 - Sediment bypass tunnels
 - Hydro-abrasion
- Goals and objectives
- Experimental setup
- Experimental results
- Outlook

Reservoirs

Gries Reservoir, Switzerland (Photo: Dr. Daniel Ehrbar, VAW)

- Hydropower generation
- Water supply
- Irrigation
- Flood and drought control

Reservoir sedimentation

Paonia Reservoir, Hotchkiss, Colorado (Annandale et al. 2018)

Baihe Reservoir, Taiwan (Photo: Demiral, 2019)

Reservoir sedimentation problems

Net global reservoir storage volume, accounting for storage loss from reservoir sedimentation (Annandale et al. 2016)

- Decrease of active volume loss of energy production, water supply, irrigation & retention volume
- Endangerment of operating safety due to the blockage of the outlet structures
- Increased turbine abrasion due to the high sediment concentration

Sedimentation countermeasures

1 Sediment yield reduction in the catchment

Sediment routing

- 3 Sediment removal
- 4 Optimized reservoir and dam layout and location

Sediment bypass tunnels (SBT): general design

1. Reservoir head, 2. Intake, 3. Guiding structure, 4.Sediment bypass tunnel

Technical details of SBTs

- Cross-sectional shape: archway, horse-shoe, circular
- Aspect ratio (*b*/*h*): 0.6 2
- Bed slope (*S_b*): 1 4%

Bed lining material: concrete, granite, cast basalt, epoxy, steel

(Photo: VAW, ETHZ)

(Müller-Hagmann 2017)

Worldwide application of SBTs

Country	Reservoir	Q _d [m³/s]	Ū[m/s]	F [-]
СН	Pfaffensprung	220	17.4	2.7
СН	Egschi	50	12.5	2.1
СН	Runcahez	110	20.2	1.7
СН	Ual da Mulin	145	14.9	2.5
СН	Palagnedra	220	19.7	2.3
СН	Rempen	100	13.3	2.6
СН	Solis	170	12.7	1.7
Japan	Nunobiki	39	6.7	1.2
Japan	Asahi	140	13.4	1.9
Japan	Miwa	300	9.8	1.6
Japan	Matsukawa	200	15.2	3.1
Japan	Koshibu	370	14.0	2.4
Japan	Yahagi			
Japan	Sakuma			

Hydro-abrasion at SBTs

Palagnedra SBT, Switzerland (Photo: VAW, ETHZ)

High flow velocities + high sediment transport rates = hydro-abrasion at SBTs

Asahi SBT, Japan (Photo: Dr. Christian Auel)

Hydro-abrasion at SBTs

impacts due to rotating/rolling particles

grinding stress due to sliding

(Auel 2014, Ph.D. dissertation)

Bedrock incision

Ukak River, Alaska, US (https://sites.google.com/site/phairotchat/)

Bialka River, Poland-Slovakia border (http://czech-rivers.blogspot.com/2016/10/)

Hydro-abrasion at SBTs

 Select suitable invert material to maximize resistance → use mechanistic abrasion models for life-cycle cost approach

Egschi (CH) (sopr AG)

(Müller-Hagmann)

Pfaffensprung (CH)

Goals and objectives

Goals

- Mitigating the hydro-abrasion problem
- Optimizing design and operation of SBTs

Objectives

Task A: Supercritical open channelflow characteristics

Task B: Sediment transport modes

Experimental setup

Experimental flume (VAW, ETH Zurich)

- *l* = 13.50 m
- *b* = 0.20 m
- *h* = 0.50 m
- *S_b* = 1% 4%
- Concrete + polyurethane foam bed lining

Task A: flow characteristics

- Velocity measurements using Laser Doppler Anemometer (LDA)
 - Cross-sectional distributions of mean flow velocities
 - Turbulence intensities
 - Bed shear stresses

Cross-sectional velocity measurement points for x=5.40 m. Numbered profiles (1-5) show the measurement points for x=5.15 and x=4.90 m

Task A: test matrix

Tests	S _b [-]	F ₀ [-]	F [-]	<i>h</i> ₀ [cm]	<i>h</i> [cm]	<i>b/h</i> ₀ [-]	b/h [-]	U [m/s]
TA1	0.01	2.0	1.93	10	10.45	2	1.91	1.95
TA2	0.01	3.0	2.54	10	11.20	2	1.79	2.66
TA3	0.01	4.0	3.33	10	11.40	2	1.75	3.52
TA4	0.01	2.0	1.85	15	15.95	1.33	1.25	2.31
TA5	0.01	3.0	2.60	15	16.56	1.33	1.21	3.31
TA6	0.01	4.0	3.32	15	17.04	1.33	1.17	4.30
TA7	0.01	3.0	2.56	20	22.29	1	0.90	3.79
TA8	0.01	3.5	2.96	20	22.39	1	0.89	4.39

Task A: mean velocity distributions

$$h_o = 10 \text{ cm}, \text{ F}_o = 2, b/h_o = 2$$

$$h_o = 10 \text{ cm}, \text{ F}_o = 3, b/h_o = 2$$

$$h_o = 10 \text{ cm}, \text{ F}_o = 4, b/h_o = 2$$

Dila Demiral 07.05.2019 | 18

Task A: mean velocity distributions

$$h_o = 20 \text{ cm}, \text{ F}_o = 3, b/h_o = 1$$

$$h_o = 20 \text{ cm}, \text{ F}_o = 3.5, b/h_o = 1$$

- 3D flow pattern due to the strong secondary currents
- Velocity dip phenomenon
- Velocity pattern changes with changing aspect ratio
- Velocity distribution is independent from F

Task A: bed shear stress distributions

$$h_o = 10 \text{ cm}, \text{ F}_o = 3, b/h_o = 2$$

$$h_o = 15 \text{ cm}, \text{ F}_o = 3, b/h_o = 1.33$$

$$h_o = 20 \text{ cm}, \text{ F}_o = 3, b/h_o = 1$$

•:
$$x = 5.40 \text{ m}; \diamond: x = 5.15 \text{ m}; \Box: x = 4.90 \text{ m}$$

Task B: particle motions

- Particle transport modes (high-speed camera)
 - Saltation trajectory parameters
 - Particle impact and rebound angles
 - Particle properties such as area, perimeter

Task B: experimental setup

Experimental setup for Task B

Task B: test conditions

- $F_o = 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0$
- *b*/*h*_o = 1, 1.33, 2, 4
- D_{50} [mm] \approx 7, 13, 21
- *S_b* = 1%, 4%
- limestone, sandstone, quartz

Particle types types and their Mohs Hardness (MH)

Σ 120 particles Σ 51 tests Laboratory of Hydraulics, Hydrology and Glaciology

Task B: data analysis

Particle saltation trajectory

Task B: particle velocities and incipient motion

Particle velocity (V_p) versus friction velocity (U_*)

Medium Small Large All data particles particles particles D_{50} [mm] 7.2 13.5 21.3 U_{*c} 0.023 0.017 0.023 0.029 θ_{c} 0.0025 0.0025 0.0025 0.0026 R^2 0.96 0.98 0.98 0.96

 $T^* = (\theta/\theta_c) - 1$ (excessive transport stage)

Task B: hop heights & hop lengths

Task B: particle impact velocities

$$k_R = \frac{P_p^2}{4\rho A_p}$$
 $\kappa_R = \text{shape factor}$ $P_p = \text{particle perimeter}$ $A_p = \text{particle area}$ $\kappa_R = 1.27 \pm 0.10$ limestone $\kappa_R = 1.20 \pm 0.05$ quartz $\kappa_R = 1.27 \pm 0.10$ sandstone

Normalized vertical impact velocity versus excess transport stage (T)

Task C: hydro-abrasion

- Hydro-abrasion experiments
 - Hydro-abrasion depths and patterns: bottom scans using 3D laser scanner
 - Time development of hydro-abrasion: intermediate scans to obtain the development

150

-10

Task C: experimental setup

Task C: test conditions

- $F_o = 2, 3, 4$ $b/h_o = 1, 1.33, 2$
- Particles: limestone, dolomite, quartzite, sandstone, quartz
- Q_s [g/s] = 100, 200, 400, 800
- Bed lining: foam and mortar
- *S_b* = 1%, 4%

Hydro-abrasion experiments

Laboratory of Hydraulics, Hydrology and Glaciology

 Σ 12+ tests

Task C: first experiment

• $F_o = 3$, $h_0 = 10$ cm, sandstone, Σ 15 h run time

Experiment	Q _s [g/s]	<i>M_s</i> [kg]	<i>t</i> (h)
TC1_1	0	0	0
TC1_2	97.7	1896	5.28
TC1_3	100.2	1896	5.27
TC1_4	208.2	948	1.28
TC1_5	202.9	948	1.32
TC1_6	395.6	948	0.67
TC1_7	416.4	948	0.65
TC1_8	719.3	948	0.35
TC1_9	719.3	948	0.37

TC1_9 Hydro-abrasion development

Task C: abrasion time development

Bed shear stress distribution \rightarrow Sediment motion \rightarrow hydro-abrasion pattern

Task D: hydro abrasion model development

EHzürich

Abrasion mill tests [Sklar and Dietrich 2001]

Existing hydro-abrasion models

Sklar and Dietrich (2004):

- A_r = Abrasion rate [m/s]
- k_v = Abrasion coefficient [-]
- Y_M = Young's modulus
- f_{st} = Splitting tensile strength
- W_{im} = Vertical impact velocity
- L_p = Particle hop length
- q_s = Specific bedload transport rate
- q_s^* = Specific bedload transport capacity

- □ Abrasion coefficient
- D Material resistance
- Energy flux term
- Cover effect term

Auel et al. (2017)

$$A_{r} = \frac{Y_{M}}{k_{v} f_{st}^{2}} \cdot \frac{\left(0.1(T^{*})^{0.39} \left[(s-1)gD\right]^{0.5}\right)^{2}}{2.3(T^{*})^{0.8}D} q_{s} \left(1-\frac{q_{s}}{q_{s}^{*}}\right)$$
$$\approx \frac{Y_{M}}{k_{v} f_{st}^{2}} \cdot \frac{(s-1)g}{230} q_{s} \left(1-\frac{q_{s}}{q_{s}^{*}}\right)$$

Task D: hydro abrasion model development

Sklar and Dietrich (2001)	Christian Auel (2014)	Current study (2017-)
Abrasion mill	Flume experiments	Flume experiments
	b/h>2	b/h = 1 to 2
Abrasive particles: Natural and artificial stones	Sandstone particles	5 types of natural stones
Bed type: Fixed	Fixed planar	Fixed planar and rough
Lining: Mortar, natural rock, foams	Mortar	Polyurethane foam and mortar

Outlook

- Hydraulics, sediment transport and hydro-abrasion
- Hydro abrasion prediction for material selection
- Optimal hydraulic design and operation of hydraulic structures
- Modelling of river bed and landscape evolution

Thank you!

Dila Demiral demiral@vaw.baug.ethz.ch