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advanced adiabatic compressed air energy storage
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Load Intraday Continuous Index Price 

(right axis)
WindSolar

Source: Energy Charts by Fraunhofer Institute for Solar Energy Systems ISE [Online, accessed May 26, 2019], https://energy-charts.de/price.htm
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How do we store electricity?

State of the art à As little as possible, supply 
base-load energy and follow load with peakers

Bulk energy storage technologies:
§ Hydrogen and fuel cells
§ Pumped hydropower storage
§ Compressed air energy storage

Source: E. Barbour. (2014) Energy Storage Technologies [Online, accessed May 24, 2019]
http://energystoragesense.com/energy-storage-technologies/ 
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Compressed air energy storage

§ Diabatic CAES systems
§ 42% - 54% round trip efficiency1

§ Fuel consumption

Cavern

C TM/G

Air

Fuel

1Venkataramani et al. Renewable and Sustainable Energy Reviews 62 (2016)
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Cavern
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Compressed air energy storage

§ Diabatic CAES systems
§ 42% - 54% round trip efficiency1

§ Fuel consumption

§ Adiabatic CAES (AA-CAES)
§ 70% round trip efficiency projected2

§ Compression heat is stored and
released in TES

1Venkataramani et al. Renewable and Sustainable Energy Reviews 62 (2016)
2Hartmann et al. Applied Energy 93 (2012)
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McIntosh, US (commissioned 1991)
§ 110 MW
§ 5x capacity of Huntorf
§ Efficiency 54% 
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Existing diabatic compressed air energy storage plants

Huntorf, Germany (commissioned 1978) 
§ 290 MW discharge, 60 MW charge
§ 310’000 m3 salt cavern volume
§ Efficiency 40% 

Potential energy storage capacity in salt formations in northern Germany is 4.5 TWh1

1Donadei et al., InSpEE technical report, KBB Underground Technologies GmbH, 2016
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Different storage mechanisms 
§ Sensible

§ Water
§ Rock beds
§ Ground

§ Latent
§ Ice storage
§ Paraffins
§ Sodium acetate (hand warmers)

§ Thermochemical
§ Reversible chemical reactions
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Thermal Energy Storage (TES)

Sensible:
Characterized by a heat capacity and a 
temperature change of the material

!" = $%&Δ(
Latent:
Characterized by the latent heat of fusion
!" = $ %&," (* − (, + .Δq + %&,0 (1 − (*

Thermochemical:
Characterized by reaction heat

6Mn2O3 +ΔH⟷ 4Mn3O4 + O2
ΔH = +416 kJ/kmol
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AA-CAES plant in Switzerland:

§ Where should it be sited?

§ What is the best plant 
configuration?

§ Can it be operated
profitably?
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Scope of SCCER Phase II

Cavern

C TM/
G

Plant

TES
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Power 100 MWel

Capacity 500 MWhel

Minimum/Maximum pressure 70/100 bar
Cavern volume 170’000 m3

Calculated efficiency 70-75%
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AA-CAES Plant configuration

70 m

10 m
2.2 km

Zurich HB main hall
≈ 100’000 m3
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AA-CAES Plant configuration

LPC HPCM HPT LPTG

TESHP

TESLP
Discharge

Charge

HP: High pressure cavern

(70 bar  p  100 bar)

LP: Low pressure cavern

(p ⇡ 10 bar)

ṁc,d = 200 kg/s

Tc = 320�C
Td = 20�C
�tc,d = 5h
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Packed-bed TES

h

r

R

1Geissbühler et al. Appl. Therm. Eng. 101 (2016).

Quasi-one-dimensional heat-transfer model1:
§ Energy equations solved for two phases 

(solid and fluid) 
§ Separate formulation for sensible and 

latent heat sections
§ Convective, conductive and radiative 

heat transfer
§ Thermal losses 
§ Temperature-dependent properties of 

materials and air
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Stand-alone performance1:
§ High exergy efficiency > 95%
§ Low pressure drop
§ Low specific costs
§ Storage material: Fluvial rocks2
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Packed-bed TES

h

r

R

1Geissbühler et al. Appl. Therm. Eng. 101 (2016).
2Becattini et al. Applied Energy 203 (2017).
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Thermocline TES

ChargingHeat transfer fluid

Hot

Cold
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Discharging
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Thermocline TES

Heat transfer fluid

Hot

Cold
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§ Effect on turbine?
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Single-tank TES performance
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Single-tank TES: Turbine power output
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§ Unsteady power output due to
§ Sliding pressure in cavern
§ Temperature drop at TES outlet
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Potential issues for AA-CAES plant

§ Unsteady power output 
àPenalty costs from Swissgrid

§ TES size vs. cavern geometry

§ No flexibility regarding unsteady operation

à Multi-tank TES, connected by controlled valves

Thermocline Control1,2 (TCC) methods can be applied

Serial Parallel

1Geissbühler et al., Solar Energy, 178, 2019a
2Geissbühler et al., Solar Energy, 178, 2019b
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Multi-tank TES
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Extraction TCC Method



|| 06.06.19Philipp Roos 20

Mixing TCC Method
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§ Does a multi-tank TES system offer cost and performance benefits for operating

cycles typical of AA-CAES plants?

§ Under which conditions?

§ Application of thermocline control methods (Extraction & Mixing)

§ Which temperature drops are achieved with each method?

§ Constant (vs. variable) operating conditions
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Multi-Tank TES – Research questions
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Result slides have been removed because they contain unpublished material. 
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Results
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§ TES outlet temperature control in AA-CAES plant is required

§ Potential solution with multi-tank TES and TCC methods

§ Efficiency loss is expected with turbine control

06.06.19Philipp Roos 23

Summary
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§ Analyze performance of entire plant including multi-tank TES

§ Analyze AA-CAES plant behavior under grid operating conditions with multi-tank 
systems

§ Numerical optimization of multi-tank TES systems 
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Outlook
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