ETH zürich

Thermal-energy storage system integration with focus on advanced adiabatic compressed air energy storage

Philipp Roos Professorship of Renewable Energy Carriers Frontiers in Energy Research, 28.05.2019

Source: Energy Charts by Fraunhofer Institute for Solar Energy Systems ISE [Online, accessed May 26, 2019], https://energy-charts.de/price.htm

How do we store electricity?

State of the art \rightarrow As little as possible, supply base-load energy and follow load with peakers

Bulk energy storage technologies:

- Hydrogen and fuel cells
- Pumped hydropower storage
- Compressed air energy storage

Source: E. Barbour. (2014) Energy Storage Technologies [Online, accessed May 24, 2019] http://energystoragesense.com/energy-storage-technologies/

Compressed air energy storage

- Diabatic CAES systems
 - 42% 54% round trip efficiency¹
 - Fuel consumption

¹Venkataramani et al. Renewable and Sustainable Energy Reviews 62 (2016)

Compressed air energy storage

- Diabatic CAES systems
 - 42% 54% round trip efficiency¹
 - Fuel consumption
- Adiabatic CAES (AA-CAES)
 - 70% round trip efficiency projected²
 - Compression heat is stored and released in TES

¹Venkataramani et al. Renewable and Sustainable Energy Reviews 62 (2016) ²Hartmann et al. Applied Energy 93 (2012)

Existing diabatic compressed air energy storage plants

Potential energy storage capacity in salt formations in northern Germany is 4.5 TWh¹

Huntorf, Germany (commissioned 1978)

- 290 MW discharge, 60 MW charge
- 310'000 m³ salt cavern volume
- Efficiency 40%

McIntosh, US (commissioned 1991)

- 110 MW
- 5x capacity of Huntorf
- Efficiency 54%

¹Donadei et al., InSpEE technical report, KBB Underground Technologies GmbH, 2016

Thermal Energy Storage (TES)

Different storage mechanisms

- Sensible
 - Water
 - Rock beds
 - Ground
- Latent
 - Ice storage
 - Paraffins
 - Sodium acetate (hand warmers)
- Thermochemical
 - Reversible chemical reactions

Sensible:

Characterized by a heat capacity and a temperature change of the material

 $Q_{\rm s} = mc_{\rm p}\Delta T$

Latent:

Characterized by the latent heat of fusion $Q_{\rm s} = m [c_{\rm p,s}(T_{\rm m} - T_{\rm i}) + f\Delta q + c_{\rm p,l}(T_{\rm f} - T_{\rm m})]$

Thermochemical: Characterized by reaction heat $6Mn_2O_3 + \Delta H \leftrightarrow 4Mn_3O_4 + O_2$ $\Delta H = +416 \text{ kJ/kmol}$

Scope of SCCER Phase II

AA-CAES plant in Switzerland:

- Where should it be sited?
- What is the best plant configuration?
- Can it be operated profitably?

AA-CAES Plant configuration

Power	100 MW _{el}
Capacity	500 MWh _{el}
Minimum/Maximum pressure	70/100 bar
Cavern volume	170'000 m ³
Calculated efficiency	70-75%

70 m 10 m 2.2 km

Zurich HB main hall ≈ 100'000 m³

Professorship of Renewable Energy Carriers

AA-CAES Plant configuration

Packed-bed TES

Quasi-one-dimensional heat-transfer model¹:

- Energy equations solved for two phases (solid and fluid)
- Separate formulation for sensible and latent heat sections
- Convective, conductive and radiative heat transfer
- Thermal losses
- Temperature-dependent properties of materials and air

¹Geissbühler et al. Appl. Therm. Eng. 101 (2016).

Packed-bed TES

Stand-alone performance¹:

- High exergy efficiency > 95%
- Low pressure drop
- Low specific costs
- Storage material: Fluvial rocks²

¹Geissbühler et al. Appl. Therm. Eng. 101 (2016). ²Becattini et al. Applied Energy 203 (2017).

Thermocline TES

Thermocline TES

ETHzürich

Single-tank TES performance

Single-tank TES: Turbine power output

$$P = \dot{m}_T c_{p,f} T_{in}(t) \eta_{s,T} \left[1 - \left(\frac{p_{out}}{p_{in}(t)}\right)^{(\gamma-1)/\gamma} \right]$$
$$p_{in}(t) = p_0 \left(1 - \frac{\dot{m}_T t}{m_0} \right)^{\gamma}$$

 $T_{in}(t)$ depends on TES design

- Unsteady power output due to
 - Sliding pressure in cavern
 - Temperature drop at TES outlet

Potential issues for AA-CAES plant

- Unsteady power output
 →Penalty costs from Swissgrid
- TES size vs. cavern geometry
- No flexibility regarding unsteady operation
- → Multi-tank TES, connected by controlled valves Thermocline Control^{1,2} (TCC) methods can be applied

¹Geissbühler et al., Solar Energy, 178, 2019a ²Geissbühler et al., Solar Energy, 178, 2019b

Multi-tank TES

Extraction TCC Method

Mixing TCC Method

Multi-Tank TES – Research questions

- Does a multi-tank TES system offer cost and performance benefits for operating cycles typical of AA-CAES plants?
- Under which conditions?
 - Application of thermocline control methods (Extraction & Mixing)
 - Which temperature drops are achieved with each method?
 - Constant (vs. variable) operating conditions

Results

Result slides have been removed because they contain unpublished material.

Summary

- TES outlet temperature control in AA-CAES plant is required
- Potential solution with multi-tank TES and TCC methods
- Efficiency loss is expected with turbine control

Outlook

- Analyze performance of entire plant including multi-tank TES
- Analyze AA-CAES plant behavior under grid operating conditions with multi-tank systems
- Numerical optimization of multi-tank TES systems

Acknowledgements

PREC Group:

- Prof. Aldo Steinfeld
- Dr. Andreas Haselbacher
- Dr. Lukas Geissbühler
- Dr. Viola Becattini
- Dr. Stefan Ströhle
- Dr. Jan Marti
- PREC People

- ALACAES
- Amberg
- BKW
- EPFL

- MAN Energy Solutions
- PSI
- SUPSI
- Funding by Innosuisse

Storage

for Energy Research

Swiss Competence Centers

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency

