

ETH zürich

José-Francisco Pérez-Calvo (PhD student)

Supervisor: Marco Mazzotti (Separation Processes Laboratory – D-MAVT)

On the application of absorption-based CO₂ capture processes to industrial point sources

Frontiers in Energy Research 24.03.2020

ETH zürich

CO₂ emissions from industrial processes – Cement production

Source: GCCSI, The Global Status of CCS (2017).

- CO₂ emissions intrinsic to the cement manufacturing process
- Higher CO₂ concentration in the flue gas with respect to only combustion

Fuel combustion with air: Raw material calcination: C (g,l,s) + O_2 (g) → CO_2 (g) CaCO₃ (s) → CaO (s) + CO_2 (g)

Institute of Process Engineering

The Chilled Ammonia Process (CAP)

- NH₃ does not degrade in the presence of impurities
- NH₃ is globally available
- ✓ NH₃ has low environmental footprint and cost
- / The CAP requires a very competitive thermal energy for regeneration
- Apply the knowledge acquired in its application to power plants
- Steam requirements, common to all absorptionbased post-combustion CO₂ capture processes
- System complexity that may lead to solid formation
- **Process complexity** derived from NH₃ volatility

Sutter et al. Faraday Discuss 192 (2016) 59-83
 Li et al. Environ Sci Technol 16 (2015) 10243-10252
 Jiang et al. Appl Energy 202 (2017) 496-506

The CAP vs Amine-based capture processes: Process Flow Diagram

 CO_2 absorption – desorption

FG pre-conditioning (SO_x removal)

FG post-conditioning

Solvent recuperation/reclaiming

CO₂ purification

CO₂ compression

From power plants to industrial point sources

Inlet flue gas specifications

- Power plants:
- NG power plants

Cement plants

Coal-fired power plants

- Industrial point sources:
- ~ 7 44 vol% CO₂

~ **3-14 vol% CO**₂

~ 4 vol% CO₂

 \sim 14 vol% CO₂

~ 18-22 vol% CO₂

CO ₂ capture efficiency		
Power plants:	~ 90%	
Industrial point sources:	~ 50 – 99%	

GOAL

Find new optimal:

- Process configurations
- Set of operating conditions

Holistic process development

Thermodynamic model: CO₂-NH₃-H₂O system

Phase diagram: CO₂-NH₃-H₂O system

Pure solids

- BC: ammonium bicarbonate (NH₄)HCO₃
- SC: ammonium sesqui-carbonate $(NH_4)_2CO_3 \cdot 2NH_4HCO_3$
- **CB**: ammonium carbonate $(NH_4)_2CO_3 \cdot H_2O$ **CM**: ammonium carbamate NH_2COONH_4

Light blue area:

Two-phase region where the solid exists in its mother liquor **Red area**: The algorithm does not converge

ETH zürich

Institute of Process Engineering

Thermodynamic model: Comparison

[4] Jänecke Z Elektrochem 35 (1929) 9:716-728[5] Que and Chen Ind Eng Chem Res 50 (2011) 11406-11421

Holistic process development

Rate-based model

Aspen Plus RadFrac distillation model (RateSep)

Simplifying:

$$N_{\rm CO_2} = \frac{A_{\rm eff}}{K_{\rm G,CO_2}} \left(p_{\rm CO_2,G} - p_{\rm CO_2,L}^* \right), \quad \text{with } \frac{1}{K_{\rm CO_2}} \left(p_{\rm CO_2,G} - p_{\rm CO_2,L}^* \right)$$

with
$$\frac{1}{K_{G,CO_2}} = \frac{RT}{k_{g,CO_2}} + \frac{H_{CO_2}}{Ek_{l,CO_2}^0}$$

Phase equilibria	Thomsen model	✓ Predicts SLE in addition to VLE	
Transport phenomena	Rochelle model [1] Wang et al. Ind Eng Chem Res 55 (2016) 5357-84	 ✓ Range of structured packings: X, Y, Z, 150-350 ✓ Aqueous solutions for CO₂ capture 	
Reaction kinetics	This work [2] Pérez-Calvo et al. <i>Chem Eng Trans</i> 69 (2018) 145-150	 ✓ CO₂ absorption pilot plant tests ✓ Commercial structured packing ✓ Synthetic flue gases containing up to 35 vol% CO₂ ✓ Aqueous ammonia solutions containing up to 17 wt% N 	IH ₃

Test rig and experimental matrix

Reaction kinetics – Test results and model fitting

 $CO_2 + 2NH_3 \xrightarrow{k_{cm}} NH_2COO^- + NH_4^+$

 $k_{\rm cm} = \boldsymbol{k}_{\rm 0cm, T_{\rm ref}} \exp\left(-\frac{\boldsymbol{E}_{\rm a, cm}}{R} \left(\frac{1}{T} - \frac{1}{T_{\rm ref}}\right)\right)$

+20%

10°C

0

0

 $r_{\rm cm} = k_{\rm cm} C_{\rm NH_3}^n C_{\rm CO_2}$

120

100

80

60

40

20

0 0

20

40

 $(N_{\rm CO_2})_{\rm model}$, kg/h

Pérez-Calvo et al. Chem Eng Trans 69 (2018) 145-150

Institute of Process Engineering

$(N_{\rm CO_2})_{\rm exp}$, kg/h José-Francisco Pérez-Calvo, francisco.perezcalvo@ipe.mavt.ethz.ch | 24.03.2020

60

80

100

120

82 experimental points

Holistic process development

Model-based process development

Performance indicators CO_2 capture efficiency, ψ [-] $\psi = \frac{\dot{m}_{\mathrm{CO}_2}^{\mathrm{FG,in}} - \dot{m}_{\mathrm{CO}_2}^{\mathrm{FG,out}}}{\dot{m}_{\mathrm{CO}_2}^{\mathrm{FG,in}}}$ Productivity, Pr [kg_{CO2}captured m⁻³ h⁻¹] $\Pr = \frac{1}{\frac{1}{\frac{1}{\Pr_{\rm CO_2 abs}} + \frac{1}{\Pr_{\rm NH_3 abs}}}} = \frac{\dot{m}_{\rm CO_2}^{\rm storage}}{V_{\rm CO_2 abs} + V_{\rm NH_3 abs}}$ Specific equivalent work, ω [MJ/kg_{CO2}captured] Steam – Reboilers Electricity Chillers

- Auxiliaries Pumps, fans and coolers
- CO₂ compressor

Specific equivalent work

Reboilers:

$$\omega_{\text{reb},i} = \frac{\dot{Q}_{\text{reb},i}}{\dot{m}_{\text{CO}_2}^{\text{FG,in}} - \dot{m}_{\text{CO}_2}^{\text{FG,out}}} \left(1 - \frac{T_{\text{amb}}}{T_{\text{reb},i} + \Delta T_{\text{steam}}}\right)$$

Chilling:

$$\omega_{\text{chill},i} = \frac{\dot{Q}_{\text{chill},i}/\text{COP}_i}{\dot{m}_{\text{CO}_2}^{\text{FG,in}} - \dot{m}_{\text{CO}_2}^{\text{FG,out}}}$$

Auxiliaries:

$$\frac{\dot{W}_{\text{fan}}^{\text{ideal}}}{\eta_{\text{comp}}} + \frac{1}{\eta_{\text{pump}}} \sum_{i} \dot{W}_{\text{pump},i}^{\text{ideal}} + \phi_{\text{cool}} \sum_{j} \dot{Q}_{\text{cool},j} \\
\frac{\dot{W}_{\text{fan}}}{\dot{\eta}_{\text{comp}}} - \dot{m}_{\text{CO}_2}^{\text{FG,in}} - \dot{m}_{\text{CO}_2}^{\text{FG,out}}$$

Model-based process development

Specifications and constraints

- CO₂ capture efficiency
- Flue gas conditions at the stack
- NH₃ concentration in waste-water streams
- CO₂ specifications
- Maximum temperature for liquid streams
- No solid formation

Inlet flue gas specifications

Power plants:

- NG power plants
- Coal-fired power plants

Industrial point sources:

Cement plants

- ~ 3-14 vol% CO₂
- \sim 4 vol% CO₂
- ~ 14 vol% CO₂
- ~ 7-44 vol% CO₂
- ~ 18-22 vol% CO₂

Holistic process development

Process optimization

Process optimization

Heuristic process optimization – CO₂ absorber results

ETH zürich

Heuristic process optimization – CO₂ absorber results

Process optimization

Rigorous process optimization (aqueous PZ) – Results

Rigorous process optimization (aqueous PZ) – Results

Rigorous process optimization (aqueous PZ) – Results

- Higher productivities (Pr) can be reached for lower CO_2 capture efficiencies (ψ)
- Minimum specific equivalent work (ω) depends on productivity (Pr) level
 - Low $\Pr \rightarrow \psi = 0.95$
 - Mid Pr $\rightarrow \psi = 0.90$
 - High $\Pr \rightarrow \psi = 0.50$
- Optimal CO_2 capture efficiency (ψ) depends on:
 - The solvent system
 - The CO₂ capture process configuration
 - The process specifications and constraints
 - The inlet flue gas properties and flowrate
- The selection of the optimal set of operating conditions requires cost estimations

Holistic process development

Process integration

ETH zürich

Process integration – Comparison among technologies

[1] Voldsund et al. Energies 12 (2019) 559

Institute of Process Engineering

Holistic process development

Acknowledgements

This project has been partially funded through the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

This work was partially supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0160

The authors would like to thank Kaj Thomsen (Department of Chemical and Biochemical Engineering, Technical University of Denmark) for making the thermodynamic model available and for providing the relevant software

ETH zürich

José-Francisco Pérez-Calvo (PhD student)

Supervisor: Marco Mazzotti (Separation Processes Laboratory – D-MAVT)

On the application of absorption-based CO₂ capture processes to industrial point sources

Frontiers in Energy Research 24.03.2020