Are Combustion Engines Entirely Bad?

• Electric

- Battery
- Renewable
- Carbon Free
- Zero-emission

- Combustion
- Diesel
- Conventional
- Engine
- Fuel

CO2 Budget

- After a certain amount of emitted
 CO2, we cannot reverse the
 average temperature increase.
- Time is running out!

The challenge we face:

Historical annual global greenhouse gas emissions

Data from ClimateWatch (1850-2017)

If we have 30 years, why is immediate action imperative?

Data for ships from Held et al. (2021): 7th Internat. Symposium on Ship Operations, Management, & Economics

Data for aircraft from Dray (2013): Journal of Air Transport Management, vol. 28, pp. 62-69

One Fast Solution

Global Lockdown

Parallel Parking Skills Level EVERGREEN

Emission trajectories for the European shipping sector...

CO₂ emission scenarios [Mt p.a.]

Used methodology for emission scenarios: Stolz & Held et al. (2021): *Applied Energy*, vol. 285: 116425

Carbon Free or Carbon Neutral Fuels Batteries are not feasible!

Production pathways for renewable fuels

Used methodology for emission scenarios: Stolz & Held et al. (2021): Applied Energy, vol. 285: 116425

The Challenge For the Shipping Industry Engine Manufacturers ?

Not Enough Scientific Studies to Incite Change!

Here is my proposed solution: A Dual Fuel Engine!

Fuel Flexible – Efficient – Low Capital Cost

Disclaimer: I did not invent it

FOUR STROKE CYCLE ENGINE

<u>4-stroke-engine.jpg (600×400) (wp.com)</u>

Compression Ignited (CI) Engines

Dual Fuel Engine

Fuel Flexible – Efficient – Low Capital Cost

Dual Fuel Engine

Auto-igniting Diesel/fuel spray Atomization and secondary breakup Evaporation and fuel-air mixing Auto-ignition Non-premixed flame

Regime transition Premixed charge forced ignition Flame kernel(s) growth

Turbulent premixed flame Turbulent flame propagation Extinction? Flame-wall interaction! Dual Fuel engines are gaining market share but not well understood!

We need to provide tools to help manufacturers design better engines

- Experiments
 - Expensive
 - Burns fuel (>10,000tons/year!!)→ emissions!
 - time consuming
 - Cannot "see" everything

- Simulation
 - Accuracy vs. speed

Computational Fluid Dynamics (CFD)

Basics of CFD Modeling for Beginners - CFD Flow Engineering

Jiyuan Tu Guan Heng Yeoh Chaoqun Liu, Computational Fluid Dynamics: A Practical Approach, Butterworth-Heinemann, Elsevier Publication, 2018 Henk Kaarle Versteeg, WeeratungeMalalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education Limited, 2007

Problem Geometry

Basics of CFD Modeling for Beginners - CFD Flow Engineering

Jiyuan Tu Guan Heng Yeoh Chaoqun Liu, Computational Fluid Dynamics: A Practical Approach,Butterworth-Heinemann, Elsevier Publication,. 2018 Henk Kaarle Versteeg, WeeratungeMalalasekera,An Introduction to Computational Fluid Dynamics: The Finite Volume Method,Pearson Education Limited, 2007

Grid Generation

Basics of CFD Modeling for Beginners - CFD Flow Engineering Jiyuan Tu Guan Heng Yeoh Chaoqun Liu, Computational Fluid Dynamics: A Practical Approach, Butterworth-Heinemann, Elsevier Publication, 2018 Henk Kaarle Versteeg, WeeratungeMalalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education Limited, 2007

Results and Analysis

Basics of CFD Modeling for Beginners - CFD Flow Engineering

Jiyuan Tu Guan Heng Yeoh Chaoqun Liu, Computational Fluid Dynamics: A Practical Approach, Butterworth-Heinemann, Elsevier Publication, 2018 Henk Kaarle Versteeg, WeeratungeMalalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education Limited, 2007

3-D Grid

Basics of CFD Modeling for Beginners - CFD Flow Engineering

Jiyuan Tu Guan Heng Yeoh Chaoqun Liu, Computational Fluid Dynamics: A Practical Approach, Butterworth-Heinemann, Elsevier Publication, 2018 Henk Kaarle Versteeg, WeeratungeMalalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education Limited, 2007

And with Combustion... Fuel + 02 → CO2 + H2O

Mass

Momentum

Energy

$$\frac{\partial \rho e}{\partial t} + \frac{\partial u_j \rho e}{\partial x_j} = -P \frac{\partial u_j}{\partial x_j} + \sigma_{ij} \frac{\partial u_i}{\partial x_j} + \frac{\partial}{\partial x_j} \left(K \frac{\partial T}{\partial x_j} \right) + \frac{\partial}{\partial x_j} \left(\rho D \sum_m h_m \frac{\partial Y_m}{\partial x_j} \right) + S$$

Species

$$\frac{\partial \rho_m}{\partial t} + \frac{\partial \rho_m u_j}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\rho D \frac{\partial Y_m}{\partial x_j} \right) + S_m$$

 $\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_i} = -\frac{\partial P}{\partial x_i} + \frac{\partial \sigma_{ij}}{\partial x_i} + S_i$

 $\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = S$

Species: chemical molecules (e.g. 02, CO2)

- Reduces computation time by not solving the chemical species equations
- Still chemically accurate
- Accounts for both non-premixed and premixed combustion modes

Begin Loop -

Solve mass, momentum, energy, species

- Reduces computation time by not solving the chemical species equations
 - Only 4 additional equations
- Still chemically accurate as complex chemical mechanisms could be used in the tabulation step
- Accounts for both non-premixed and premixed combustion modes
 - 1 table for each combustion mode

Model Validation

Non Premixed

Premixed

Dual Fuel

Ignition Validation

Rapid compression-expansion machine (RCEM)

Srna, Aleš, et al. "Effect of methane on pilot-fuel auto-ignition in dual-fuel engines." *Proceedings of the Combustion Institute* 37.4 (2019): 4741-4749.

Srna, Aleš, et al. "Experimental investigation of pilot-fuel combustion in dual-fuel engines, Part 2: Understanding the underlying mechanisms by means of optical diagnostics." *Fuel* 255 (2019): 115766.

Srna, Aleš, et al. "Effect of methane on pilot-fuel auto-ignition in dual-fuel engines." *Proceedings of the Combustion Institute* 37.4 (2019): 4741-4749. Srna, Aleš, et al. "Experimental investigation of pilot-fuel combustion in dual-fuel engines, Part 2:

Understanding the underlying mechanisms by means of optical diagnostics." Fuel 255 (2019): 115766.

CH₄ influence on the ignition delay

Ignition delay

г_{sol} = 770К

г_{оо} = 810К

2

1.8

1.6

- CH₄ chemically influences • ignition
- Ignition modelling has to • capture this behavior

Seddik, Omar, et al. Flamelet generated manifolds applied to Dual-Fuel combustion of lean methane/air mixtures at engine relevant conditions ignited by n dodecane micro pilot sprays. No. 2019-01-1163. SAE Technical Paper, 2019.

Srna, Aleš, et al. "Effect of methane on pilot-fuel auto-ignition in dual-fuel engines." Proceedings of the Combustion Institute 37.4 (2019): 4741-4749.

Srna, Aleš, et al. "Experimental investigation of pilot-fuel combustion in dual-fuel engines, Part 2: Understanding the underlying mechanisms by means of optical diagnostics." Fuel 255 (2019): 115766. 39

Higher-T Diesel Combustion

Characteristic difference from gasengine condition cases:

- Very short (negligible) ignition delay
- Methane has no influence on • ignition delay

Short injection (0.7 ms)

Long injection (1.7 ms)

Srna, Aleš, et al. "Effect of methane on pilot-fuel auto-ignition in dual-fuel engines." Proceedings of the Combustion Institute 37.4 (2019): 4741-4749.

Srna, Aleš, et al. "Experimental investigation of pilot-fuel combustion in dual-fuel engines, Part 2: Understanding the underlying mechanisms by means of optical diagnostics." Fuel 255 (2019): 115766. Seddik, Omar, et al. Flamelet generated manifolds applied to Dual-Fuel combustion of lean methane/air mixtures at engine relevant conditions ignited by n dodecane micro pilot sprays. No. 2019-01-1163. SAE Technical Paper, 2019.

Model Validation

Premixed

Dual Fuel

Flame Propagation Validation Direct Numerical Simulation of Syngas Premixed Flame

Ignition		
	S _L ⁰	1.38m/s
	dL0	1.14mm
	Р ^о	1bar
	T _{wall}	550K
	Tu	822K
	Fuel	Syngas (H2 & CO)

Jafargholi, Frouzakis et al., LAV/ETHZ

Millions of CPU hours!!

Model Validation

The Test Rig – an Overview

ETH zürich LAV (C) NUniversity of Applied Sciences and Arts Northwestern Switzerland

Optical Exhaust valves combustion Intake valves chamber Blind covers (Ø60×20mm) Flywheel Electric motor Liebherr D944 engine block with crank shaft and pistons

Characterization of dual-fuel combustion processes

D. Humair, P. Cartier, P. Süess, S. Wüthrich, K. Herrmann, C. Barro, B. Schneider, C. Schürch, K. Boulouchos

Optical Access?

Test Rig Working Principle

ETH zürich LAV (V) NUNIVERSITY OF Applied Sciences and Arts Northwestern Switzerland

Schneider, B.; Schürch, C.; Boulouchos, K.; Herzig, S.; Hangartner, M.; Humair, D.; Wüthrich, S.; Gossweiler, C.; Herrmann, K. The Flex-OeCoS—a Novel Optically Accessible Test Rig for the Investigation of Advanced Combustion Processes under Engine-Like Conditions. *Energies* **2020**, *13*, 1794. https://doi.org/10.3390/en13071794

PIV – Results I

ETH zürich LAV (C) NUNIVERSITY OF Applied Sciences and Arts Northwestern Switzerland

Characterization of dual-fuel combustion processes

D. Humair, P. Cartier, P. Süess, S. Wüthrich, K. Herrmann, C. Barro, B. Schneider, C. Schürch, K. Boulouchos

Schneider, B.; Schürch, C.; Boulouchos, K.; Herzig, S.; Hangartner, M.; Humair, D.; Wüthrich, S.; Gossweiler, C.; Herrmann, K. The Flex-OeCoS—a Novel Optically Accessible Test Rig for the Investigation of Advanced Combustion Processes under Engine-Like Conditions. *Energies* **2020**, *13*, 1794. https://doi.org/10.3390/en13071794

Optical Diagnostics for Diesel Operation

20

-10

-20

20

-10

-20

10 -10

10 -10

n-Dodecane

0

20

10

-10

-20

20

10

0

-10

-20

10 -10

0

10 -10

Fuel Variation

-10

-10

20

10

-10

-20

-10

0

0

-10 °CA

Schlieren

Diesel

Diesel n-Dodecane HVO OME 3 OME 3-5 idle 0 10 15 20 25 30 Crank angle [°CA]

Schneider, B.; Schürch, C.; Boulouchos, K.; Herzig, S.; Hangartner, M.; Humair, D.; Wüthrich, S.; Gossweiler, C.; Herrmann, K. The Flex-OeCoS—a Novel Optically Accessible Test Rig for the Investigation of Advanced Combustion Processes under Engine-Like Conditions. Energies 2020, 13, 1794. https://doi.org/10.3390/en13071794

22.04.2021 48

Schlieren Imaging for Dual Fuel Operation

ETH zürich LAV 🔨 University of Applied Sciences and Arts Northwestern Switzerland $\mathbf{n}|\boldsymbol{w}$

Lambda Variation $\lambda = 2.3$ $\lambda = 2.0$ $\lambda = 1.7$ $\lambda = \infty$ counts [-] counts [-] counts [-] counts [-] 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000

Energizing Time Variation

Schneider, B.; Schürch, C.; Boulouchos, K.; Herzig, S.; Hangartner, M.; Humair, D.; Wüthrich, S.; Gossweiler, C.; Herrmann, K. The Flex-OeCoS—a Novel Optically Accessible Test Rig for the Investigation of Advanced Combustion Processes under Engine-Like Conditions. *Energies* **2020**, *13*, 1794. https://doi.org/10.3390/en13071794

Stay Tuned For More CFD Results!

Summary

We must act NOW

~50 Gtons CO2 in 30 years

Dual Fuel engines could be the solution They are already gaining popularity

Combustion Engines are not that bad Fossil fuel is

The shipping industry's future is still unclear

Communication between academia and industry is crucial

A good dual fuel CFD model will already mitigate thousands of tons of CO2 Industry still relies heavily on experimental R&D testing

We as academic researchers must play our role in the energy challenge

Develop fast and reliable tools to help engine manufacturers

References

- Energy Systems
 - Held et al. (2021): European Transport Research Review, vol. 13, art. 9
 - Held et al. (2021): 7th Internat. Symposium on Ship Operations, Management, & Economics
 - Stolz & Held et al. (2021): Applied Energy, vol. 285: 116425
- Experimental investigations
 - Schneider, B.; Schürch, C.; Boulouchos, K.; Herzig, S.; Hangartner, M.; Humair, D.; Wüthrich, S.; Gossweiler, C.; Herrmann, K. The Flex-OeCoS—a Novel Optically Accessible Test Rig for the Investigation of Advanced Combustion Processes under Engine-Like Conditions. *Energies* 2020, *13*, 1794. https://doi.org/10.3390/en13071794
 - Characterization of dual-fuel combustion processes: D. Humair, P. Cartier, P. Süess, S. Wüthrich, K. Herrmann, C. Barro, B. Schneider, C. Schürch, K. Boulouchos
 - Srna, Aleš, et al. "Effect of methane on pilot-fuel auto-ignition in dual-fuel engines." *Proceedings of the Combustion Institute* 37.4 (2019): 4741-4749.
 - Srna, Aleš, et al. "Experimental investigation of pilot-fuel combustion in dual-fuel engines, Part 2: Understanding the underlying mechanisms by means of optical diagnostics." *Fuel* 255 (2019): 115766.
- Simulations
 - Seddik, Omar, et al. *Flamelet generated manifolds applied to Dual-Fuel combustion of lean methane/air mixtures at engine relevant conditions ignited by n dodecane micro pilot sprays*. No. 2019-01-1163. SAE Technical Paper, 2019.