

THE GLOBAL ENERGY CHALLENGE – A CORPORATE VIEW, ZURICH, APRIL 3RD, 2017

Power systems of the future

ABB's view

Gerhard Salge, Global Head of Technology, ABB Power Grids division

Changing power generation balance

Power generation

Power balance tipping towards renewables, driven by policy & disruptive technology cost reduction

Main growth in variable renewables such as wind and solar

Two growth paths

- Mainly centralized renewables
- Mainly distributed renewables

Centralized vs decentralized

Renewables expected to be dominant source for electrical power generation

Sources: ABB analysis

Grid – enabler or bottleneck ...

Slide 3

Technical challenges countries encounter

Grid investments and technologies required to address challenges

Elements of the evolving grid

Grid interconnection

Micro- and Nanogrids

Energy storage

Power quality

Digitalization

New business models

Grid interconnection

Opportunities

Renewable integration across regions

- Fluctuations during the day
- Seasonal variations

Optimal use of reserve and peaking capacities

Diversification of electricity supply

Reduction of wholesale electricity price volatility

Strengthening grid operation in case of fault conditions

Increase capacity utilization factor of conventional generation

Challenges

Political factors

Economic framework

Technological capabilities

Coordinated operation (global harmonization of standards, grid codes and operational practices)

Grid interconnection: Ultra High Voltage

World's most powerful UHVDC link

Chiangji-Guquan, China

1100kV DC

12000MW

>3000km

Slide 6

World's first multi-terminal UHVDC

North-East Agra, India

800kV DC

6000MW

>1700km

World's first UHVDC grid

SGCC pilot project in China Project phase 2018 – 2020 Rated up to ±500kV/3000MW

ŀ

Power systems of the future

Microgrids and integration of renewables

Resilient and cost-effective technology

Grid code compliant integration of wind & solar

Stabilizing weak grids

Microgrids acting as one controllable generator or load

Access to power in remote locations

Slide 7

Batteries Microgrid Plus System Gueral PowerStore Invertee Substation Ring Main Unit

Kodiak Island, Alaska, USA

- Wind (9MW)
- Diesel
- Flywheel (2 x 1MW)

AusNet, Victoria, Australia

- Weak grid support
- Diesel (1MW)
- Battery (1MWh)

Power quality & storage solutions increasingly needed

Slide 8

(

Power systems of the future

Digitalization – Managing the future power systems

Digital Substation

Flexibility and speed in planning & operation

Connected asset life-cycle management

Reduced maintenance time and frequency
Reduced downtime
Optimized planning and replacements

Digital Distribution

Distributed Energy Resource Management

Hosting and efficient utilization of all devices connected to distribution grid

Power systems of the future – an evolutionary vision

Interconnected system of regional grids with fluctuating demand and generation patterns

Renewables will take major share in electrical power generation

Disruptive elements

Photovoltaics

Batteries

Digitalization

Distributed generation with changing consumer & supplier patterns

Distribution grid role changing

Transmission backbone essential

New business & operational models

#