
Distributed multi-energy-hubs: a review and technoeconomic model to assess viability and potential pathways

Energy Science Technology Conference 2015 S.4c: Energy System Analysis and Modelling

Karlsruhe 21 May, 2015

Distributed solutions on district level as promising lever to cope with the increasing share of decentralized, intermittent power generation

... calls for innovative, integrated solutions

- Need for flexibility measures to decouple energy supply and demand
 - Operational flexibility of generation capacity
 - Transmission & distribution grid extension
 - Storage technologies (e.g. batteries, P2G)
 - Demand side management
- Distributed, decentralized solutions as a lever to
 - increase self-consumption
 - match local production and consumption on neighborhood / district scale

Current Project

TEC

Overview on distributed solutions with different techn. configurations on district level
Assessment of techno-economic performance of "Multi-Energy-Hubs"

Agenda

- Concept of Multi-Energy-Hubs
- Multi-Energy-Hubs in Practice
- Techno-Economic Model
- Outlook

Agenda

Concept of Multi-Energy-Hubs

- Multi-Energy-Hubs in Practice
- Techno-Economic Model
- Outlook

What is a Multi-Energy-Hub? Existing terminologies / concepts in literature and our understanding

Terminology in literature

Our understanding / definition

Based on a literature review of different definitions and concepts, we are approaching multi-energy-hubs by their specific application. Thus, our understanding is as follows:

A multi-energy-hub allows to match intermittent renewable power production with district level energy demand.

Definition (based on various definitions and concepts in literature) A multi-energy-hub is a collection of production (e.g. solar PV, wind turbine), conversion (e.g. heat pump, fuel cell) and storage devices (e.g. battery, hot water storage tank) which has an input of at least one intermittent renewable primary energy source (e.g. solar, wind), deals with multiple energy carriers, allows for conversion from one energy carrier to another, and provides energy carriers as output to serve specific energy services (e.g. lighting, space heating, mobility). Remarks Spatial perspective of this research is on building and neighborhood / district leve "Primary energy is the energy embodied in natural resources (e.g., coal, crude oil, natural gas, uranium) that has no undergone any anthropogenic conversion." II Multi-Energy-Hub Output Input "Energy carriers include electricity and heat rov-supply chain between primary so Primary energy" IPCC (2007) Energy Production device/s Electricity Source Production devices convert a primary energy · Conversion devices convert one energy ca Conversion device/s Gas rage devices allow the storing of energy Energy Storage device Heat Carrier

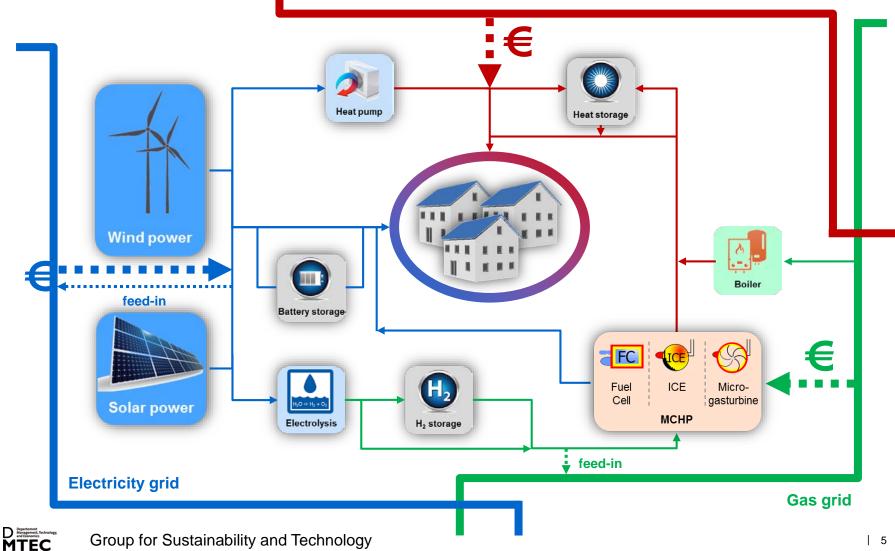
Selected publications

Fabrizio et al. (2010)

Hemmes et al. (2007)

Maroufmashat et al. (2014)

Geidl et al. (2007)


Mancarella (2014)

Manwell (2004)

What is a Multi-Energy-Hub? Our simplified depiction of the concept with P2G on district level

District heat

Agenda

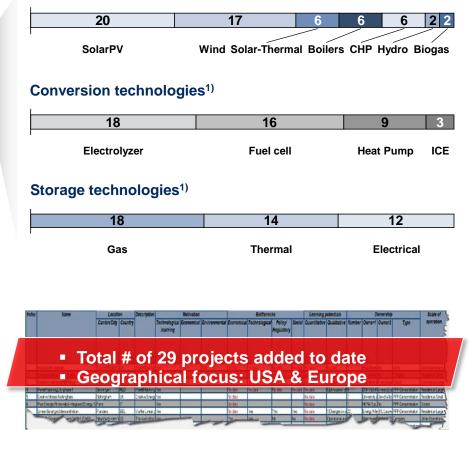
- Concept of Multi-Energy-Hubs
- Multi-Energy-Hubs in Practice
- Techno-Economic Model
- Outlook

To add market perspective, we are currently compiling important insights on existing/planned multi-energy-hub projects in a database

Containing information on ...

- Location
- Technologies integrated
 - Type (e.g., PV, heat pump, battery)
 - Rating (e.g., capacity, efficiency)
 - Manufacturer
- Ownership model
 - Туре
 - Name

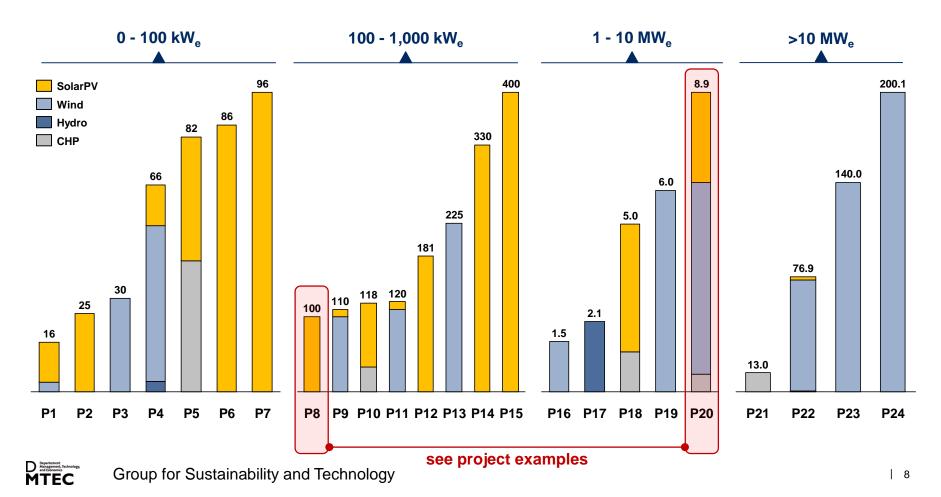
Schedule


- Operating status
- Construction date

Funding

- Source
- Amount
- Grid connectivity
- Motivation, drivers / barriers
- Current / future market services

Split of technologies across projects, in


Production technologies

According to hub size, clusters emerge with different production technologies in use (preliminary sample analysis of project database)

Project split across installed electric production capacity, 24 projects

P8

A deep-dive into two selected projects reveals the differences of multi-energy-hubs in terms of e.g., size, technologies, motivation

P20

— Energieautarkes MFH Brütten

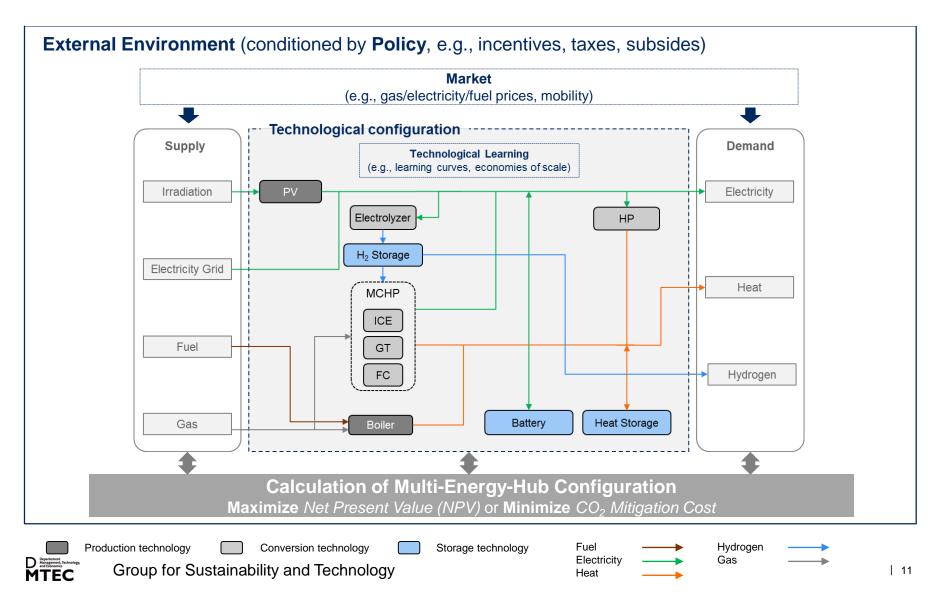
- Demonstration project for a grid independent Multi-Family-House (MFH), under construction since 2015, scheduled operation for 2016
- Supplies residential heat and electricity demand for a MFH with 9 residential units, no grid connectivity for electricity, gas and heat
- Integrated technologies
 - Production: Solar PV (100 MWh/yr)
 - Conversion: Electrolyzer, MCHP (fuel cell), and heat pump
 - Storage: Battery (tbd.), hydrogen storage (in vessels), and thermal storage
- Innovative pricing scheme, i.e., no direct energy cost but energy budget incl. bonus/malus system

— SmartRegion Pellworm

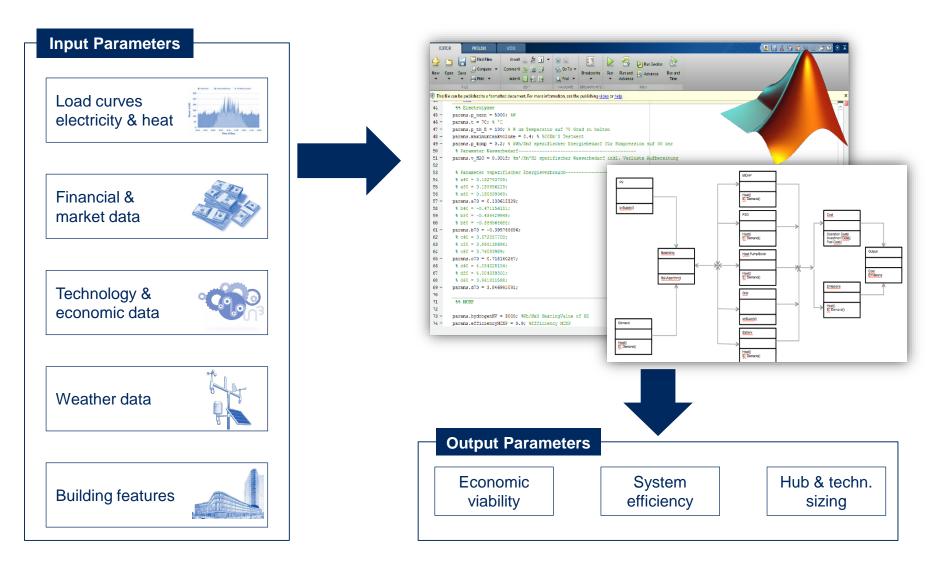
- Demonstration project to achieve maximum utilization of local intermittent renewable energy sources (wind and solar), in operation since 2014
- Supplies residential heat and electricity demands of Pellworm but grid-connected to mainland, GER
- Integrated technologies
 - Production: Solar PV (2.7 $\rm MW_p),$ wind turbine (5.7 MW), and biogas-CHP (0.5 $\rm MW_e)$
 - Conversion: Heat pumps
 - Storage: Battery (lithium-ion, 1 MW), battery (redox-flow, 0.2 MW), and thermal storage

SmartRegio

 Project consortium consists of 8 members coordinated by E.ON SE, involving private, government and university partners

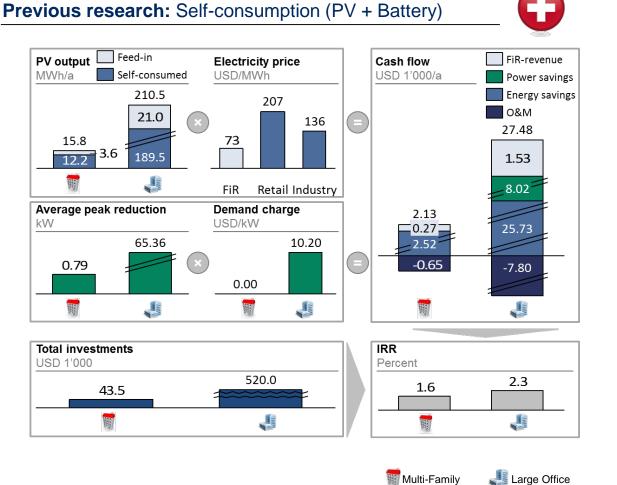


Agenda


- Concept of Multi-Energy-Hubs
- Multi-Energy-Hubs in Practice
- Techno-Economic Model
- Outlook

Structural overview on the techno-economic model

Model implementation: Input and output parameters using MATLAB



D Departement, Technology, and Economics MTEC

As we are currently finalizing the development of the model, first results are expected this summer

Expected results / findings

- Current cost barriers and major cost drivers
- Overview on key performance indicators
 - NPV with cash flow calculation (investment, O&M, savings)
 - CO₂ mitigation cost
- Ideal techn. configurations and sizing for different hub types and applications
- Share of self-sufficiency (cost to be grid independent)
- Influence of techn. learning potential and market dynamics
- Spatial differences for locations in scope (DE, CH, AT, IT)

In a second step, the techno-economic model is refined by adding both scenario and sensitivity analyses

Scenario Analysis

Testing of model results under different scenarios, e.g.,

Technological configurations

- "High RES share"
- "Battery-only"
- • •

Economic environment

- "Zero-subsidies"
- "High gas/ electricity price"

÷	•	•

Scenario	Assumption	Electricity Wholesale Price Scenario	Electricity Retail Price Scenario	
S1	 Unlimited access of household to wholesale market 	High: +3% per year (real)		
S2		Low: -1% per year (real)	High: + 2% per year (real)	
83		Medium: $+$ 1.5% per year (real)	Medium: + 1% per year (real)	
S4		High: +3% per year (real)	T	
S5		Low: -1% per year (real)	— Low: + 0% per year (real)	
56	No access of		High: $+ 2\%$ per year (real)	
87	household to	Constant: 0 EUR/kWh	Medium: + 1% per year (real)	
58	• wholesale market		Low: + 0% per year (real)	

Sensitivity Analysis

Testing of model results by varying input parameters, e.g.,

- Sizing of PV, storage, hub
- Plant lifetime
- Capex / Opex
- Efficiency
- Discount rates
- •

Variable	Starting value	40 -30 -20 -00 0 10 20 30 40 50	Change in NPV of storage per EUR
Nominal discount rate	45		invested in storag
Bettery investment cost 30%	isa EURIXWH + 175 EUR/XW		
Battery investment cost decrease	-76% p.a.		
ncrease in global installed PV (apacity)	32.5% peryear		
0&M cost bettery	5.5UR/KW per year		
Learning rate inverter	-25		
0&M cest PV	1.5% of IV system cost p.4.		
BOS	v) of battery cost		
earning rate PV module	20%		
EPC PV System	S% of PV system cost	du .	
learning rate BOS _{ex}	as.	¢	
Module EB(T margin	10%	du l	-33%
	-55	1	+33%

Agenda

- Concept of Multi-Energy-Hubs
- Multi-Energy-Hubs in Practice
- Techno-Economic Model
- Outlook

Outlook & next steps: Results from the techno-economic model are expected by July, the database will be further complemented too

Techno-economic model

- Finalization of integration of remaining technologies and economic aspects
- Validation of model assumptions / preliminary results by real test cases and experts
- Results on techno-economic assessment in different technological configurations
- Addition of second model step with scenario and sensitivity analyses

Database on market installations

- Addition of more projects to the database to achieve comprehensiveness
- Detailed analysis of selected projects to gain deeper, qualitative understanding
- Evaluation of overall data to obtain insights, e.g., predominant technical configurations, rationale / motivation, barriers

Organizational implications

- Compiling of qualitative interviews with multi-energy-hub owners, operators, tech. manufacturers to understand barriers/drivers at the individual and firm level
- Derivation of policy implications, i.a. instruments to foster the implementation of multi-energy-hubs

Thank you for your kind attention!

Appendix

Literature

- Fabrizio, E., Corrado, V., & Filippi, M. (2010). A model to design and optimize multi-energy systems in buildings at the design concept stage. Renewable Energy, 35(3), 644–655. doi:10.1016/j.renene.2009.08.012
- Geidl M., Koeppel G., Favre-Perrod P., Klöckl B., Andersson G., Fröhlich K., Energy Hubs for the Future, IEEE Power Energy Mag, 5 (1) (2007), pp. 25–30
- Hajimiragha A., Canizares C., Fowler M., Geidl M., Andersson G., Optimal energy flow of integrated energy systems with hydrogen economy considerations. In: VII IREP symposium – bulk power system dynamics and control. Charleston, SC; August 2007
- Hemmes K., Zachariah-Wolff J.L., Geidl M., Andersson G. Towards multi-source multi-product energy systems , International Journal of Hydrogen Energy, 32 (10–11) (2007), pp. 1332–1338
- IRENA (2015), Renewable Power Generation Costs in 2014
- IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[Core Writing Team, Pachauri, R.K and Reisinger, A.(eds.)]. IPCC, Geneva, Switzerland, 104 pp
- Kienzle F., Andersson G., Valuing Investments in Multi-Energy Generation Plants under Uncertainty : A Real Options Analysis. Presented at the IAEE European Conference, Vienna, Austria, 2009
- Lang T., Ammann D., Girod B. (2015), Profitability in absence of subsidies: A techno-economic analysis of rooftop photovoltaic self-consumption in residential and commercial buildings, submitted to Renewable Energy (April 2015)
- Mancarella P., MES (multi-energy systems): An overview of concepts and evaluation models, Energy, 65, issue C, 2014, pp. 1-17
- Manwell J.F., Hybrid Energy Systems, Encyclopedia of Energy, 2004, pp. 215-229
- Maroufmashat, A., Khavas, S. S., & Bakhteeyar, H. (2014). Design and Operation of a Multicarrier Energy System Based On Multi Objective Optimization Approach, 8(9), 582–587.

What is a Multi-Energy-Hub? Definition according to different concepts in literature

Definition (based on various definitions and concepts in literature)

A *multi-energy-hub* is a collection of *production* (e.g. solar PV, wind turbine), *conversion* (e.g. heat pump, fuel cell) and *storage devices* (e.g. battery, hot water storage tank) which has an *input of at least one intermittent renewable primary energy source* (e.g. solar, wind), deals with *multiple energy carriers*, allows for *conversion from one energy carrier to another,* and provides energy carriers as output to serve specific energy services (e.g. lighting, space heating, mobility).

Source: Geidl et al. (2007), Hajimiragha et al. (2007), Kienzle et al. (2011), Manwell (2004), Hemmes et al. (2008), Mancarella (2014)

Remarks

- Spatial perspective of this research is on building and neighborhood / district level
- "Primary energy is the energy embodied in natural resources (e.g., coal, crude oil, natural gas, uranium) that has not undergone any anthropogenic conversion." IPCC (2007)
- "Energy carriers include electricity and heat as well as solid, liquid and gaseous fuels, occupy intermediate steps in the energy-supply chain between primary sources and end-use applications. An energy carrier is thus a transmitter of energy" IPCC (2007)
- Production devices convert a primary energy source into an energy carrier (e.g. solar PV, wind turbine, biogas plant)
- Conversion devices convert one energy carrier to another energy carrier (e.g. electrolyzer, fuel cell, heat pump)
- Storage devices allow the storing of energy carriers (e.g. battery, hot water storage tanks, hydrogen storage tanks)

