Characterization of Dual-Fuel Combustion Processes

Conference on Combustion Research
ETH Zurich, 24.06.19

University of Applied Sciences and Arts Northwestern Switzerland (FHNW)
School of Engineering
Institute of Thermal and Fluid Engineering (ITFE)

Prof. Dr. Kai Herrmann
Klosterzelgstrasse 2
CH-5210 Windisch
Switzerland
Dual-fuel principle

- Otto principle (premixed) → lean gas/air charge
- Low-pressure gas admission
- Liquid pilot fuel injection → two stage ignition process
- Combustion transition → auto-ignition → premixed flame

Pilot-fuel ignition

→ various complex processes
→ several injection stages
→ different combustion phases

PhD thesis A. Srna
Diss. ETH No. 25420

Pilot-fuel injection evaporation/mixing
EOI entrainment

2-stage ignition process
Combustion transition
(auto-ignition to premixed flame)
Introduction

Dual-fuel principle

- Otto principle (premixed) → lean gas/air charge
- Low-pressure gas admission
- Liquid pilot fuel injection → two stage ignition process
- Combustion transition → auto-ignition → premixed flame

DF engine application

31 DF (MEP 27.2 bar)
Introduction

Lean-burn gas engine characteristics

- \(\uparrow\) high efficiency
- \(\uparrow\) high H/C ratio
- \(\downarrow\) low NO\(_x\) and PM (soot) emissions

- Ignition: knocking vs. misfiring
- Stability: cycle-to-cycle variation
- CH\(_4\) slip \(\rightarrow\) GHG emissions

Dual-fuel principle

- Otto principle (premixed) \(\rightarrow\) lean gas/air charge
- Low-pressure gas admission
- Liquid pilot fuel injection \(\rightarrow\) two stage ignition process
- Combustion transition \(\rightarrow\) auto-ignition \(\rightarrow\) premixed flame

DF engine application

31 DF (MEP 27.2 bar)
Introduction

DF characterization

- Operation window → knocking vs. misfiring
- Ignition delay/location
- Flame propagation
- Heat release
- Combustion stability → cycle-to-cycle variation

DF engine application

31 DF (MEP 27.2 bar)

(qualitative) DF (gas mode) vs. Diesel

<table>
<thead>
<tr>
<th>Emission values [%]</th>
<th>CO₂</th>
<th>NOₓ</th>
<th>SOₓ</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

CO₂ > NOₓ > SOₓ > PM
Motivation

DF characterization

- Operation window
 → knocking vs. misfiring
- Ignition delay/location
- Flame propagation
- Heat release
- Combustion stability
 → cycle-to-cycle variation

pre-ignition
Test Facility "Flex-OeCoS"

Features (specifications)

• Optical access: 4 windows optical chamber: $\varnothing 60 \times 20$ mm

• Engine-like compression/combustion pressure/temperature
 \Rightarrow up to 160 bar max. 240 bar / $\leq 800 \ldots \geq 1000$ K

• Variation of flow/turbulence by motor speed
 $\Rightarrow u' \approx 3\ldots6$ m/s @ 400...1000 rpm

• Flexible operation (cycles) in a wide range of air-fuel ratios

• Variability to adapt test rig to a variety of combustion processes

Process conditions

T: fine-wire TCs

p: sensors

flow: high-speed PIV

instrumented with various probes
(boundary conditions)

Jointly developed and pursued by LAV-ETHZ and ITFE-FHNW

Liebherr D944 (2 l per cyl., $\varnothing 130$ mm, stroke 150 mm)
Characterization DF Combustion Processes

Measurements

Simultaneous Schlieren/OH* chemiluminescence

Investigations

- Ignition delay (location): OH* chemiluminescence
- Flame propagation: Schlieren
- Heat release/cyclic stability: pressure measurements

Spatial resolution: 60×30 mm → full height CC

Temporal resolution:

≤ 600 rpm: 36 kHz (27.8 µs) → 0.1 °CA (!)
≥ 800 rpm: 18 kHz (55.6 µs) → 0.2 °CA
Measurements

Simultaneous Schlieren/OH* chemiluminescence

Investigations

- Ignition delay (location): OH* chemiluminescence
- Flame propagation: Schlieren
- Heat release/cyclic stability: pressure measurements

Parameter variation

<table>
<thead>
<tr>
<th>CH\textsubscript{4}/air charge: (T\textsubscript{in}=50°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Air-fuel ratio (\lambda): inf. / 3.0 / 2.5 / 2.0 / 1.5</td>
</tr>
<tr>
<td>• Compression pressure: 70 / 100 / 130 [bar]</td>
</tr>
<tr>
<td>• Flow conditions: 400 / 600 / 800 [rpm]</td>
</tr>
</tbody>
</table>

Injection:

- Pilot fuel: Dodecane / OME (polyoxymethylene dimethyl ether)
- Nozzle diameter: 90 / 120 [\mu s]
- Injection pressure: 600 / 1000 / 1400 [bar]
- Start of injection (SOI): -30 / -25 / -20 / -15 / -10 / -5 / 0 / +5 [°CA]
- Injection duration (ET): ... < 300 ... 500 ... 800 < ... [\mu s] (25 \mu s steps)
Variation CH₄/air charge (λ)

- Methane defers the ignition delay
- \(\uparrow \frac{c_p}{c_v} \Rightarrow \downarrow T \), energy absorption
- Pilot fuel auto-ignition suppressed (chemistry – micro-mixing interaction)
- Heat release depending on \(\lambda \) (gas dynamics, acoustic resonator)

Dodecane / p=70 bar / 600 rpm / p_{inj}=1000 bar / ET=500 µs / SOI=-15 °CA

Air (\(\lambda = \text{inf.} \)) \hspace{1cm} \lambda = 3.0 \hspace{1cm} \lambda = 2.5 \hspace{1cm} \lambda = 2.0 \hspace{1cm} \lambda = 1.5

\(\lambda = 3.0 \) \hspace{1cm} \lambda = 2.5 \hspace{1cm} \lambda = 2.0 \hspace{1cm} \lambda = 1.5

in preparation to be published
Variation SOI

Dodecane / $p=70$ bar / 600 rpm / $p_{\text{inj}}=1000$ bar / ET=500 μs / $\lambda=2.0$

- Ignition delay strongly temperature dependent (density $\neq \emptyset$)
 - rapid spreading of first-stage reactivity towards fuel-richer conditions
 - CH_4 deferring the cool-flame reactivity (low-T ignition) \Rightarrow \uparrow ID
- Heat release
- Combustion stability
- Soot formation (!)

in preparation to be published
Start of Injection (SOI)

Variation SOI / pilot fuel: OME\textsubscript{3-5} (polyoxymethylene dimethyl ether, mixture n=3-5)

- Dodecane
- OME

Error bars: Confidence level 90%

SOI = -25 °CA
SOI = -20 °CA
SOI = -15 °CA
SOI = -10 °CA
SOI = -5 °CA
SOI = 0 °CA

SOI = -25 °CA
SOI = -20 °CA
SOI = -15 °CA
SOI = -10 °CA
SOI = -5 °CA
SOI = 0 °CA

in preparation to be published
Variation DOI (energizing time ET)

Dodecane / p=70 bar / 600 rpm / p_inj=1000 bar / SOI=-15/-20/-25 °CA / λ=2.0

- ET = 300 µs
- ET = 450 µs
- ET = 600 µs
- ET = 750 µs

DOI < ID: "enhanced mixing" (due to end-of-injection transient)

Error bars: Confidence level 90%

- ET = 300 µs
- ET = 450 µs
- ET = 600 µs
- ET = 750 µs

in preparation to be published
Variation pilot fuel: OME$_{3-5}$ (polyoxymethylene dimethyl ether, mixture n=3-5)

- **Dodecane vs. OME$_{3-5}$ / p=70 bar / 600 rpm / p_{inj}=1000 bar / SOI=-15 °CA / ET=450 μs / $\lambda=2.0$**

- **DOD SOI=-15°CA**
- **OME SOI=-15°CA, $d = 90$ μm**
- **-11.3 °CA**
- **-9.9 °CA**

- **ET = 450 μs**
- **∅ 90 μm**
- **stability**
- **soot (misfiring)**

in preparation to be published
Duration of Injection (DOI)

Variation pilot fuel: OME$_{3-5}$ (polyoxymethylene dimethyl ether, mixture n=3-5)

Dodecane vs. OME$_{3-5}$ / p=70 bar / 600 rpm / p_{inj}=1000 bar / SOI=-15 °CA / ET=450 µs / $\lambda=2.0$

- Ignition delay trend
- Ignition location
- Soot: ↓ formation ↑ oxidation
- LHV$_{\text{OME}} = 19.1$ [MJ/kg]
 vs. LHV$_{\text{DOD}} = 44.1$ [MJ/kg]
- Adapted LHV$_{\text{OME}}$ by:
 ↑ injection
- Combustion stability

- ET = 450 µs
- \emptyset 90 µm
- ET = 450 µs
- \emptyset 120 µm

in preparation to be published
Conclusions & Outlook

Conclusions

• Test facility operation (engine relevant loads) ➔ acquisition of operation/boundary conditions
google ➔ pressure, temperature, flow/turbulence (PIV)

• Tunable DF combustion process conditions ➔ from misfiring to knocking
 ➔ variation of operation/injection parameters
 ➔ pilot fuels: dodecane vs. OME

• Application of optical diagnostics ➔ simultaneous Schlieren/OH\(^*\) chemiluminescence

• Characterization DF combustion process ➔ ignition delay, flame propagation, heat release (stability)

• Comprehensive investigations/analysis ➔ reference data for CFD/CRFD

Outlook

• Further data analysis/quantification (ignition location, flame speed, COV, etc.)

• Additional measurements: \(\uparrow\) pressures, constant density \((T_{\text{in}})\), rpm variation, homogenization

• Alternative gas/pilot fuel: renewable, synthetic, blends, ...

•
Acknowledgments

LAV - ETHZ
- Konstantinos Boulouchos
- Christian Schürch
- Bruno Schneider
- Christophe Barro
- LAV Workshop

ITFE - FHNW
- Christoph Gossweiler
- Alexey Denisov
- David Humair
- Patrick Cartier
- Pascal Süess
- Silas Wüthrich

Financial support

- Project "Q-Flux" (SI/501546-01)
- Project "Adapted Fuels" (SI/501628-01)

Capacity area A2: Chemical energy converters (Ch. Bach, Empa)
Topic A2.2: IC engine powertrain efficiency increase
Task A2.2.1: Multi-mode/minimal emission combustion process