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Abstract

Lean premix gas turbine combustors are prone to high amplitude pressure oscillations driven

by nonlinear thermoacoustic coupling. These pulsations are unwanted because they can affect

the lifetime of the combustor parts. The standard strategy to get rid of these oscillations is to

implement acoustic damping devices. Knowing the deterministic components characterizing the

acoustic-flame coupling, the linear growth rates in particular, is necessary to properly design the

dampers. However, the time scale associated with the variations of the engine operating conditions

are much larger than the one of the acoustic pressure amplitude dynamics. Therefore, the linearly

unstable system cannot be observed during the exponential amplitude growth of one of the acoustic

eigenmodes and it is not possible to directly determine the linear growth rates. They can only be

estimated from signals recorded when the system is operating on limit cycling states. Fortunately,

these states are driven by a strong stochastic forcing produced by the highly turbulent reactive

flow. It is shown in this article that the deterministic quantities can be extracted from the noise

perturbed limit cycles data by making use of the stochastic differential equations describing the

combustion instabilities. A straightforward experimental set-up allowing to reproduce the main

features of the thermoacoustic coupling observed in gas turbines is used to validate the proposed

identification methods. In a second step, these latter methods are applied to engine data.

Keywords: Thermoacoustics; Combustion instabilities; Gas turbine; Stochastic Hopf bifurcation;

Van der Pol oscillator.

1. Introduction

Getting rid of combustion instabilities is one of the strenuous challenges that engineers developing

gas turbine combustion chambers must meet. Constructive interaction between flames and com-

bustor acoustic eigenmodes can yield large amplitude pressure oscillations which induce vibrations

and in turn decrease the lifetime of the structural part. This phenomenon has been studied for

a long time and one can find an interesting collection of paper dealing with that subject in [1].

Nevertheless, the plurality of acoustic eigenmodes which can nonlinearly couple with the flames
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and the progressively more stringent emission regulations for NOx, CO and unburned hydrocar-

bon keep the researchers busy with that topic in order to increase the operational flexibility of the

engines.

Significant progress were recently made in terms of thermoacoustic coupling modeling and were

reported in numerous studies. Among these, the nonlinear features of flame dynamics were inves-

tigated through the describing function methodology [2, 3, 4, 5, 6] and a theoretical framework

accounting for non-normal interactions between thermoacoustic eigenmodes has been introduced to

model transient energy growths which might be a possible explanation for triggering of oscillating

states pertaining to stable branch of sub-critical Hopf bifurcations e.g. [7, 8].

An efficient way of preventing combustion instabilities is to implement dampers in the combustor

in order to increase the acoustic dissipation of the system. The knowledge of the linear growth

rates associated to the thermoacoustic coupling enables to properly design these dampers as shown

in [9] and avoid any over or under estimation of their volume. This is important due to the fact

that space for damping equipment is generally limited.

The difficulty lies in the fact that when the origin is asymptotically unstable, the system is always

observed on a limit cycling state, which in turn prevents from directly estimating growth rates by

considering the exponential growth of the oscillation amplitude from the origin. This is because

the time taken to change the gas turbine operating conditions to cross the Hopf bifurcation is much

longer than the characteristic time of the acoustic amplitude dynamics.

In the early 90s, active control has been used to observe the growth of initially small perturbations

and to measure linear growth rate [10]. More recently [3], the flame describing function approach

was used to predict linear growth rates and limit cycle amplitudes. However, such strategies do

only apply to laboratory facilities and test rigs equipped with excitation systems powerful enough

to drive the oscillation at a level where the flames non-linearly interact with the acoustic waves.

Moreover, the aim in [3] is to predict the deterministic properties of the system – in particular the

linear growth rate – by using the knowledge of the dynamics of the subsystems considered inde-

pendently – i.e. the flame response and the acoustic propagation within the combustor – whereas

in the present study, the objective is to extract these deterministic quantities by observing the

system as a whole.

Without active control device, the state of the art in estimating deterministic quantities charac-

terizing thermoacoustic coupling in combustion chambers from dynamic pressure time series is

limited to the case of linearly stable conditions. One can for example refer to the work reported in

[11, 12, 13]. As stressed by Culick in the chapter 7-10 of his monograph [14], the methods presented

in these references provide the stability margin associated to a given operating condition, i.e. the

damping rate, but they do not apply to an asymptotically unstable regime for which the amplitude

is limited by nonlinear mechanisms and they cannot be used to extract the corresponding linear

growth rate.

In this paper, we show that it is possible to measure this latter quantity by making use of the intense

background noise generated by the highly turbulent reactive flow in the combustion chamber. This
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Figure 1: Block diagram of a generalized thermo acoustic system with stochastic heat release source term qs as
input, and measured pressure fluctuations p as output. All linear (thermo–) acoustic interactions are contained in
H, the non-linear part of the system is contained in Fnl. The transfer function G represents the passive acoustic
dynamics, F represents the flame transfer function.

inherent stochastic forcing is a major driver of the limit cycle dynamics but its influence is barely

documented and most of the investigations dealing with thermoacoustic coupling are restricted to

deterministic stability analysis. There is a small number of studies in which the background noise

impact on combustion instabilities as been described and analyzed: theoretical and experimental

material giving qualitative insight into the influence of this noise on limit cycles were presented in

[15, 16, 17] or recently in [18]. It is shown in the present paper that quantitative estimation of the

growth rates can also be obtained by furthering the analysis of the stochastic differential equations

introduced in the aforementioned references.

The parameters identification approaches derived in the following section are based on the equations

governing stochastically driven oscillators with nonlinear damping. The corresponding foundations

were settled decades ago and one can for instance refer to the major contribution from Stratonovich

[19] or to the subsequent outstanding papers [20] or [21]. The growth rate identification approaches

are then validated using a noise driven electroacoustic Van der Pol oscillator which mimic the ther-

moacoustic coupling operating in combustion chambers. In the last part, they are applied to engine

data.

2. Theoretical model

2.1. Thermo-acoustic coupling in combustion chambers

A thermoacoustic system can conceptually be represented by a block diagram (e.g. [22]). In

the present work, one considers the one depicted in figure 1. In this system, the heat release

fluctuations by the combustion process, qt, act as a source term for the acoustic field. Wave

propagation through the various components of the combustion system, including reflection and

damping on the boundaries and at area discontinuities is represented by the system G. It will be

assumed here that these wave propagation phenomena are linear. The response of the flame to an

acoustic perturbation can be assumed to be linear for small amplitude perturbations, however for
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sufficiently large amplitudes this assumption will no longer hold. Nevertheless, the flame response

can conceptually be split in a linear part and a non–linear part. The linear response of the

flame to acoustic velocity perturbations u is described by a transfer function F 1. The linear heat

release response is denoted as q, the sum of the purely non-linear part and the stochastic part of

the heat release is denoted by y. All non-linear processes are contained in the function Fnl(q).

By definition, Fnl will not contain any linear parts, i.e., limq→0 dFnl(q)/dq = 0. It might seem

physically more correct to express the flame nonlinearity as a function of u rather than q, however

it is clear that mathematically this doesn’t matter because q is a linear function of u. As pointed

out by a reviewer, equivalence ratio fluctuations – which do not appear explicitly in figure 1 –

are significantly contributing to the flame response when practical fuel injection systems are used.

According to [23, 24, 25], these equivalence ratio fluctuations are linearly and non-linearly linked

to the acoustic perturbations. One can therefore consider that their influence is comprised in F

and Fnl.

The part of the heat release that has a stochastic nature (typically due to turbulent combustion

noise) is denoted as qs which is the input to the system. Thus, the heat release fluctuations are

considered to be a superposition of three contributions: a stochastic part, a part that depends

linearly on the acoustic field and a part that depends non-linearly on the acoustic field. The signal

p represents the measurement of the acoustic pressure fluctuations at one or more locations.

By collecting all linear elements in one system H , the system can be described by a feedback

interconnection of a linear system with a purely non-linear system:
[

q

p

]

= H(s) y

y = Fnl(q) + qs (1)

Although the linear transfer functions G and F are typically stable (i.e. they have eigenvalues

with negative real parts), the system H can be unstable due to the feedback of the heat release q.

It can be shown via a similarity transform2 based on the systems eigenvectors that any linear

non-degenerate system H can be represented by the following state–space system:
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x




+D y , (3)

1The flame can also respond to acoustic pressure fluctuations, the treatment is completely analogous but for
simplicity of notation only coupling via acoustic velocity will be considered here.

2Note that the similarity transform does not change the input-output relation of the system, nor its eigenvalues
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In which, Ω2 is a diagonal matrix containing the squared absolute values of the complex eigen-

values (λn = νn ± i ωn) of the system, ν is a diagonal matrix containing the real part of the

complex eigenvalues, I is the unity matrix and λr is a diagonal matrix containing the real-valued

eigenvalues. Because it will take finite time for an acoustic wave to propagate through the system,

the direct feedthrough gain D will be considered zero in the subsequent analysis. The states ηn,

η̇n and x in the state vectors η, η̇ and xr represent the dynamics of the modes of the system

associated with their complex and real eigenvalues. It is worth emphasizing that all pairs (ηn, η̇n)

are independent of each other, because the similarity transform is chosen such that matrix A has

orthogonal3 eigenvectors and hence AAT = AT A.

It will be assumed that the nonlinear response Fnl(q) is insignificant for sufficiently small ampli-

tudes of q. Hence, the poles or eigenvalues of the system H define the linear stability of the system:

if the real part of one of the eigenvalues λ is positive, then the system H is linearly unstable. The

pressure distribution associated with each mode is referred to as it’s mode shape. Each of the

modes oscillates at frequency ωn, and will have a grow or decay rate νn in the linear regime. If

the amplitudes q reach sufficiently high levels, the non-linear response cannot be neglected any-

more. Limit cycles occur if the nonlinearity is such that it counter-acts the linear amplification

and hence renders the non-linear system stable. Even if the system is non-linearly stabilized in

this manner, the limit cycle amplitudes will not be constant: the amplitudes will fluctuate in a

stochastic manner around a non-zero mean level due to the stochastic driving term qs. It will be

shown that the stochastic properties of these fluctuations of the limit cycle amplitude are related

to the linear growth rate of the system.

Depending on the complexity of the system, G will have many eigenvalues, but only a few will

be of concern: those with the largest real parts. In practice, the system dynamics is generally

governed by one of the eigenmodes at a given operating condition. We therefore limit our analysis

to the dynamics related to only one pair (η, η̇) associated to one eigenvalue pair (λ = ν ± i ω0). It

will be assumed that ν ≪ ω0.

η̈ − 2ν η̇ + ω2

0 η = b y

q = c11 η + c12 η̇ (4)

in which b and c11 and c12 are constant and real valued. Substituting y = Fnl(q) + qs yields:

η̈ + ω2

0 η = 2ν η̇ + b Fnl(c11 η + c12 η̇) + b qs (5)

It has been shown experimentally in e.g. [3] that the nonlinearity does not only act on the amplitude

of oscillation, but can also induce a phase shift, i.e the nonlinearity cannot be considered static

but is generally dynamic. However, in vicinity of ωn a dynamic nonlinearity can be represented

by a static nonlinear function of η and it’s time derivative. It is straightforward to show that no

3This does not exclude the possibility of so–called non–normal growth of the energy of the system, see the
appendix.
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higher order time derivatives or integrals of η are needed because for ω = ω0 these will all be linear

combinations of η and η̇. Thus, eq. (5) can be written as:

η̈ + ω2

0 η = f(η, η̇) + ξ, (6)

with ξ = b qs . In the case of thermo-acoustic coupling occurring in combustion chambers, the

process ξ is induced by the turbulent combustion noise. The intensity of this non-coherent forcing

follows a power law decay [26]:
∂P

∂ω
∝ ω−5/2,

where P denotes the power spectral density of the radiated noise. One can also refer to the

recent studies proposed in [27, 28] providing a good overview of the spectral content of the noise

radiated by premixed flames. When the system is evolving on a limit cycle, the peak in the

spectrum is usually very sharp compared to the smooth variations of the turbulent combustion

noise intensity. As a first approximation, it is assumed that ξ is a stationary, delta-correlated

and normally distributed random process with 〈ξξτ 〉 = Γδ(τ) and that the process η is Markovian.

Rigorous substantiation of this assumption is under investigation. Nevertheless, it will be shown in

what follows that the results obtained with this idealized forcing term are in very good agreement

with the observations.

When the r.h.s. term of eq. (6) is small compared to both terms on the l.h.s., η will be quasi-

sinusoidal. It is therefore adequate, to investigate the system in the amplitude-phase coordinate

system:

A =
√

η2 + (η̇/ω0)2 and ϕ = − arctan

(
η̇

ω0η

)

− ω0t, (7)

with η = A cos(ω0t+ ϕ) = A cosφ. By differentiating (7) with respect to time, one gets:

Ȧ = −
sinφ

ω0

[ f(A cosφ,−Aω0 sinφ) + ξ ] and ϕ̇ = −
cosφ

Aω0

[ f(A cosφ,−Aω0 sinφ) + ξ ] (8)

The function f is now expanded as a Taylor series:

f(η, η̇) =
∑

n

∑

m

γn,m ηn η̇m. (9)

Substituting this expansion in eq. (8), and applying deterministic and stochastic averaging (respec-

tively refer to [29] and [19]) yields:

Ȧ =
1

2
γ0,1A+

(
1

8
γ2,1 +

3ω2
0

8
γ0,3

)

A3 +
Γ

4ω2
0
A

+ ζ +O(A5) (10)

ϕ̇ = −
1

2
γ1,0 −

(
ω0

8
γ1,2 +

3

8ω
γ3,0

)

A2 +
1

A
χ+O(A5) (11)

where χ and ζ are two uncorrelated white noise excitations, each featuring the same noise intensity

Γ/2ω2
0. On the one hand, the form of eq. (10) truncated to the third order is the amplitude
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equation of a stochastic Van der Pol oscillator (e.g. [30]). On the other hand it has been observed

by the authors that the first two terms in the l.h.s. of eq. (11) have negligible contribution. This

conclusion was drawn from the analysis of the random process ϕ from acoustic data obtained in a

gas turbine combustor. Therefore, the general amplitude-phase SDEs (10) and (11) reduce to:

Ȧ = A

(
β − α

2
−
κ

8
A2

)

+
Γ

4ω2
0
A

+ ζ, (12)

ϕ̇ =
1

A
χ, (13)

where γ0,1 = 2ν has been replaced by β−α. The positive constant α stands for the linear acoustic

absorption in the volume and at the boundaries and β for the linear contribution of the feedback

induced by the flame which can be either negative or positive. In this latter situation the linear

terms are competing and a Hopf bifurcation is crossed at α = β. In fact, eqs. (12) and (13) are the

amplitude and phase equation of a stochastic Van der Pol oscillator with f(η, η̇) = η̇(β−α−κη2).

2.2. System identification

At this point, the basic equations that are needed for the extraction of deterministic quantities

from acoustic pressure time traces have been settled. Several identification methods are now

presented. For linearly stable system, it is possible to apply the approach proposed in section

2.2.1, while the ones presented in 2.2.2 and 2.2.3 can be used for linearly unstable system. The

method given in 2.2.4 can be equally applied to linearly stable and unstable systems. The unknown

that have to be identified are the oscillator’s eigenfrequency ω0, the linear growth/damping rate4

ν = (β−α)/2, the noise intensity Γ and the nonlinearity coefficient κ which defines the deterministic

limit cycle amplitude A0 = (8ν/κ)1/2. Note that since p = c21A cosφ− c21ω0A sinφ, the acoustic

pressure amplitude is linearly proportional toA and one can perform these deterministic parameters

identification using the pressure signal, provided that the neighboring system’s eigenfrequencies

are distant.

2.2.1. Power spectral density of the acoustic pressure

The oscillator featuring a negative growth rate, i.e. α > β ⇒ ν < 0 is first considered. In this

situation the system is linearly stable and the equilibrium is the attractor. When this system is

driven by stochastic forcing, one can make use of the power spectral density in order to extract ν

and Γ. The nonlinear part of the forcing is neglected in the model and one can write eq. (6) in

the form:

η̈ − 2ν η̇ + ω2

0η = ξ. (14)

4Note that in contrast with ref. [3], ν does not depend on the oscillation amplitude. This is because the growth
rate considered in the “Flame describing function” framework [3] is the one associated to the system linearized
around a given amplitude. Therefore, it implicitly contains the effect of nonlinearity at each particular amplitude; it
decreases and ultimately vanishes when approaching the limit cycle. Here, the so-called “linear growth rate” is the
real part of the linear system’s eigenvalue and it corresponds to the growth rate discussed in the “Flame transfer
function” framework.
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One can then write

Sηη =
1

2π

Γ

(ω2
0
− ω2)2 + 4ν2ω2

(15)

The unknown quantities ω0, ν and Γ can be obtained by fitting eq. (15) on the power spectral

density of the measured dynamic pressure. Note that this approach applies only to linearly stable

systems and it is not valid when the stochastic driving is so strong that the nonlinear nature of

the response cannot be neglected anymore.

2.2.2. Power spectral density of the amplitude fluctuations

The case of a weakly perturbed limit cycle is now considered. The linear growth rate ν is positive

and the noise intensity Γ is small enough to allow a linearization of the simplified equations (12)

and (13). It is therefore assumed that the limit cycle amplitude fluctuations A′ induced by the

stochastic forcing are small compared to the deterministic limit cycle amplitude A0 = (8ν/κ)1/2,

which is the stationary solution of eq. (12) without stochastic terms. The amplitude is decomposed

in a mean and fluctuating components Ā and A′, where A′ ≪ Ā. Keeping the first order terms in

eq. (12) and considering that Ā ≈ A0 since the stochastic forcing is weak, yields

Ȧ′ = −

(

2ν +
Γ

4ω2
0
A2

0

)

A′ + ζ. (16)

The normalized form of the power spectral density of the amplitude fluctuations is then given by

SA′A′(ω)

Ā2
=

c0/π

ω2 + (2ν + c0)
2

(17)

where c0 = Γ/4ω2
0A

2
0. It is then possible to extract the linear growth rate ν and the noise intensity

Γ by fitting with eq. (17) the power spectral density of the dynamic pressure amplitude, this latter

quantity being obtained by applying Hilbert transform to the measured pressure signal. Note that

this method is valid only if the Van der Pol limit cycle is weakly perturbed by additive white noise.

In such situation where ν ≫ c0, the correlation time of the amplitude’s fluctuations is equal to half

the inverse of the linear growth rate.

2.2.3. Stationary solution of the Fokker-Planck equation

It is now interesting to consider a more general approach based on the Fokker-Planck equation

associated with the amplitude and phase stochastic differential equations. In particular, the appli-

cability range of this method is not restricted to low noise intensity level as it was the case with

the linearization method. Eq. (12) has the form of a Langevin equation containing a nonlinear

damping term. It can be written as a stochastic differential equation in the Îto sense:

dA = F(A) dt+ dW where dW = ζ dt, (18)

and F(A) = A
(

ν −
κ

8
A2

)

+
Γ

4ω2
0
A

(19)
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In this equation, dW is an increment of a Wiener process coming from the Gaussian white noise

ζ featuring the intensity Γ/(2ω2
0). Recall that ζ is assumed to be delta-correlated despite it has a

non vanishing correlation time in real applications. This hypothesis holds when the time constant

characterizing the variations of the amplitude is much larger than the correlation time of the

stochastic forcing. This assumption guarantees that the probability density of the amplitude

obeys the following Fokker-Planck equation

∂

∂t
p(A, t) = −

∂

∂A
[F(A)p(A, t)] +

Γ

4ω2
0

∂2

∂A2
p(A, t) (20)

Accounting for the fact that the density is vanishing when the amplitude tends to infinity, one can

write that the stationary probability density is solution of

d

dA
p(A)−

4ω2
0

Γ
F(A)p(A) = 0. (21)

It is given by

p(A) =

√

4ν/πc0

A2
0
erfc

(

−
√

ν/4c0

) A exp

(

−
ν

c0

(
A2 −A2

0

2A2
0

)2
)

(22)

where A0 =
√

8ν/κ is the deterministic limit cycle amplitude and c0 = Γ/4ω2
0A

2
0. Note that the

probability density is function of the ratio ν/c0 which gives the balance between the limit cycle

strength characterized by the oscillator’s linear growth rate and the normalized stochastic forcing

level. An estimate of the ratio ν/c0 can therefore be obtained together with the deterministic limit

cycle amplitude A0 by fitting the experimentally obtained density function p(A) with eq. (22).

Alternatively, the ratio ν/c0 can be obtained from p(η). This latter density function can be deduced

from the density p(A,ϕ) of the joint Markov process (A,ϕ). When stationary state is established,

ϕ is a uniformly distributed process with p(ϕ) = 1/2π, and one can write p(A,ϕ) = p(A)p(ϕ) =

p(A)/2π, which was shown in [21] and used for instance in [30]. Making use of the fact that

p(A,ϕ) = JA,ϕ→η,η̇ p(η, η̇), where J is the Jacobian, one gets p(A,ϕ) = Aω0 p(η, η̇). The density

p(η) is then obtained

p(η) =

∫
∞

−∞

p(η, η̇) dη̇ where p(η, η̇) =
1

2πAω0

p(A). (23)

Next the normalized noise intensity coefficient c0 has to be identified in order to deduce ν from

the estimate of ν/c0. One way to get an estimate of c0 is to look at the autocorrelation function

kηη. Indeed it can be shown that its envelope is exponential and that the decay rate is equal to c0.

Another way to quantify c0 is to focus on the random process Y = Aϕ̇ (see eq. (13)) which is a

white noise with an intensity Γ/2ω2
0. Making use of the theoretical density function expression for

a band-pass filtered white noise, one can also estimate c0 and afterward deduce ν.
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2.2.4. Drift and diffusion coefficients of the Fokker-Planck equation

The last method discussed in this study has been introduced in 1998 [31, 32, 33] and recently

improved to account for finite sampling time effects [34, 35]. It consists in determining the states-

dependent convection and diffusion coefficients of the Fokker-Planck equation describing the evo-

lution of the transitional probability density of the random process. In the situation investigated

here, it reduces to:

∂

∂t
p(A, t+ τ |a, t) = −

∂

∂A
{F(A)p(A, t+ τ |a, t)} +

Γ

4ω2
0

∂2

∂A2
p(A, t+ τ |a, t) (24)

Note that multiplying eq. (24) by p(a, t) and integrating over a yields the evolution equation (20)

of the single state probability density. This is the transport equation of the transitional probability

and it features a convective component and a diffusive one. One can for example refer to [36] for the

derivation of the Fokker-Planck equation with detailed explanations of the underlying assumptions.

Based on the work of Kolmogorov [37], it is known that the convection and diffusion coefficients

of eq. (24) are related to the 1st and 2nd transition moments:

F(A) = lim
∆t→0

1

∆t

∫
∞

−∞

(a−A) p (A, t+∆t|a, t) da (25)

Γ

2ω2
0

= lim
∆t→0

1

∆t

∫
∞

−∞

(a−A)2 p (A, t+∆t|a, t) da. (26)

Making use of these relationships to extract the deterministic quantities of the system has been

recently proposed [31]. It is indeed possible to get from measured data the transition moments and

perform numerical integrations in order to retrieve the convection and diffusion coefficients of the

Fokker-Planck equation. One of the advantages of this technique is that the form of F does not have

to be predefined to calculate the coefficients. This was not the case for the approaches presented in

the previous sections or for the extended Kalman filtering technique proposed in [38]. Confronting

the estimated amplitude dependent convection coefficient to the theoretical model given in eq. (19)

is therefore a way to validate the assumption of the Van der Pol type deterministic behavior. It can

be furthermore used to fit the deterministic growth rate, this latter being the linear contribution

of the convection coefficient.

3. Experimental validation

The objective of this chapter is to validate the system identification techniques that have been

presented in the previous sections. For that purpose, a well controlled experiment allowing to

mimic thermoacoustic coupling in gas turbine combustion chambers is set up. More specifically,

the electroacoustic feedback which is used allows to reproduce the nonlinear flame response to

acoustic perturbations.
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Figure 2: Left: Sketch of the experimental set-up. The electro-acoustic feedback which can be adjusted to yield
self-induced acoustic oscillations in the chamber involves the microphone, the real-time controller, an amplifier and
loudspeaker 1. The additive stochastic forcing is produced with loudspeaker 2. Right: Input-Output command
g(x) = c3x− c4x3 (solid line) with superimposed experimental data (bullets).

3.1. Experimental set-up

An electro-acoustic Van der Pol oscillator has been developed to validate the identification tech-

niques. A sketch of the set-up is presented in figure 2. Its main components are a closed tube

containing two loudspeakers fed by amplified signals, a microphone and a real time controller. The

microphone signal is routed to the first loudspeaker via the real time controller. Input/Output

analog modules are connected to this latter controller which includes a reconfigurable field pro-

grammable gate array (FPGA). This set-up allows accurate arithmetic transformations of the input

signal at a rate which is 3 order of magnitude faster than the acoustic eigenfrequency considered.

The purpose of this set-up is to generate self-induced acoustic oscillations with Van der Pol type

dynamics. Without feedback control, i.e. when the microphone is disconnected, the amplitude

of each of the eigenmodes of the enclosure can be approximated by the following second order

differential equation

η̈ + αη̇ + ω2

0η = 0, (27)

where ω0 and α are the eigenfrequency and the natural damping coefficient of the eigenmode. The

damping coefficient includes acoustic energy absorption in the volume and on the boundaries.

With the loudspeaker which behaves as an acoustic volume source, one can write the differential

equation governing the modal amplitude η as follows

η̈ + αη̇ + ω2

0η = c1v̇, (28)

where v is the input signal feeding the loudspeaker and c1 accounts for both the electroacousti-

cal conversion factor of the loudspeaker and its position with respect to the acoustic eigenmode

considered. One can write v = g(c2p) where g is the input-output relationship defined in the

real-time controller, p is the acoustic pressure measured by the microphone and c2 depends on its
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Figure 3: Limit cycle oscillation obtained from the electroacoustic Van der Pol oscillator. The acoustic pressure
spectrum and time trace are respectively plotted on the left and right sides (acoustic pressure signal recorded with
the microphone). The thick solid lines correspond to the signal filtered on a narrow bandwidth around the self-
excited eigenmode peak. Upper diagrams: Loudspeaker 2 is switched off. Lower diagrams: Loudspeaker 2 provides
the additive stochastic noise to the system.

sensitivity. It yields v = g(c2ψ(xmic)η(t)). If the function g is defined as g(x) = c3x − c4x
3 with

its corresponding time derivative c3ẋ− 3c4ẋx
2, one can write

η̈ + ω2

0η = η̇(β − α− κη2), (29)

where β = c1c2c3ψmic and κ = 3c1c
3
2c4ψ

3
mic

which is the equation for the Van der Pol oscillator.

The input-output command defined in the FPGA is shown in figure 2 together with experimental

data. The user interface used to define the real-time transformation has been built such that the

parameters c3 and c4, and therefore β and κ, can be modified on-line. This allows to instantaneously

change from a linearly stable to a linearly unstable situation (α > β and α < β respectively). Note

that the third order nonlinearity imposed by the controller allows to mimic the flame response

saturation. It must be mentioned that an analog band-pass filter is plugged between the microphone

and the real-time controller. This filter is used to select one particular mode of the chamber for

the electroacoustic feedback.

When the parameters are set such that β > α, the electro-acoustic Van der Pol evolves to a limit

cycle. In practical combustion system prone to thermo-acoustic coupling, the limit cycles are

perturbed by the background noise produced by the highly turbulent reactive flow. It is generally

valid in practice to assume that the additive noise component dominates the multiplicative one,

the latter being induced by temperature fluctuations in the combustion chamber (e.g. [39] for the

particular case of a cryogenic flames used for rocket engine). In the experimental setup presented

here, the turbulence-induced noise is mimicked using a second loudspeaker fed with a white noise

generator. When the second loudspeaker is working, the system dynamics can be approximated
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by the stochastic Van der Pol equation:

η̈ + ω2

0η = η̇(β − α− κη2) + ξ, (30)

In figure 3, a typical limit cycling state with and without stochastic forcing is presented. One

can see that when the second loudspeaker is acting several eigenmodes of the chamber are visible

in the spectrum which is not the case when stochastic forcing is not applied. In particular, at

approximately twice the frequency of the main peak one can see that the response to the stochastic

forcing is important. This is due to the location of the loudspeaker 2 which favors the amplification

of the eigenmodes corresponding to this frequency range.
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Figure 4: Linearly unstable electroacoustic Van der Pol oscillator (same conditions as for figure 3). When the
feedback loop is activated, the system evolves into a limit cycling state. Left: The linear growth rate ν = (β−α)/2
can be directly measured by fitting a line on the logarithmic plot of the acoustic amplitude extracted from the
noise-free transient (Loudspeaker 2 is switched off). Right: Loudspeaker 2 is switched on i.e. additive stochastic
forcing is applied. A snapshot of the filtered acoustic pressure signal is presented (the filter bandwidth is shown in
figure 3). The distribution of the filtered acoustic pressure is given on the right.

From the time traces presented in figure 3, it might be wrongly concluded that the stochastic

forcing does not affect the acoustic oscillations associated to the main peak (see filtered signal

plotted as a bold solid line). One will later see that the amplitude dynamics is much slower than

the acoustic oscillations, cannot be seen from such short period of time but is actually impacted

by the stochastic forcing imposed by Loudspeaker 2.

Beyond its simplicity, the main advantage of this experimental setup is that on the one hand

the “deterministic” quantities can be directly obtained using the noise-free system (Loudspeaker

2 turned off) and on the other the different theoretical approaches presented in the previous

section can be used to estimate these quantities from stochastically perturbed limit cycle data

(Loudspeaker 2 turned on). This is illustrated in figures 4 and 5.

In figure 4, the operating conditions are the same as the ones used in figure 3. By changing
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Figure 5: Linearly stable electroacoustic Van der Pol oscillator. When the gain is changed such that β becomes
smaller than α, the system evolves to the equilibrium. Left: The linear damping rate ν = (β−α)/2 can be directly
measured by fitting a line on the logarithmic plot of the acoustic amplitude A extracted from the noise-free transient
(Loudspeaker 2 is switched off). Right: Loudspeaker 2 is switched on i.e. additive stochastic forcing is applied. A
snapshot of the filtered acoustic pressure signal is presented (the filter bandwidth is the same as in figure 3). The
distribution of the filtered acoustic pressure is given on the right.

the value of the coefficient c3 of the real-time controller, the system which was linearly stable

(α > β) becomes unstable (α < β). The acoustic oscillations start growing at the exponential rate

(β − α)/2. This growth rate can be directly measured by fitting a line on the logarithmic plot

of the acoustic pressure amplitude which is obtained by taking the absolute value of the Hilbert

transform of the raw signal. When the amplitude reaches a certain level, the effects of the cubic

nonlinearity imposed by the real time controller become visible. The oscillation amplitude growth

deviates from the exponential curve and the system finally stabilizes on a limit cycle. The limit

cycle amplitude A0 can be used to estimate the nonlinearity coefficient κ since κ = 8ν/A2
0.

In figure 5 on the left side, one can see that when the value of c3 is suddenly changed, the system

which was initially stabilized on a limit cycle becomes linearly stable and the oscillation amplitude

exponentially decreases to the equilibrium which is now the attractor. In the same way as for the

growth rate, the damping rate is obtained by fitting a line on the logarithmic plot of the amplitude

decay.

The diagrams on the right in figure 4 and 5 are now considered. The stable limit cycle and the

asymptotically stable origin respectively obtained in the last mentioned figures for two values of c3,

one yielding β > α and the other β < α are now perturbed with a stochastic forcing produced by

means of the second loudspeaker. Time traces of the corresponding filtered signals are presented

together with the distribution of the acoustic pressure filtered around the peak. The short time

trace (≈ 15 cycles) plotted as a bold black solid line in the lower right diagram of figure 3 was

extracted from the same filtered data set as the one given in gray in figure 4 on the right. The width
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Figure 6: Bifurcation diagram of the noise-free electroacoustic Van der Pol oscillator. Solid lines have been fitted
on the experimental data.

of the band-pass filter which has been applied is approximately one tenth of the eigenfrequency

considered (see the lower left diagram in figure 3), which is sufficient to capture the main dynamics

associated with the stochastically perturbed limit cycle. It is important to note that from this

longer snapshot (≈ 850 cycles), the influence of the stochastic forcing on the limit cycle amplitude

is clearly visible which is not the case if one considers only 15 consecutive cycles as shown in the

lower right diagram of figure 3. This is because the acoustic amplitude is a random process having

a much longer correlation time than the acoustic period, and this is related to the fact that the

right hand side in eq. (30) is small compared to the terms in the left hand side.

In the diagrams on the right in figure 4 and 5, the noise intensity Γ is set to the same level.

A bimodal density function is obtained for the case β > α while a gaussian like distribution

characterizes the stochastically perturbed asymptotically stable origin (β < α). One can refer to

the work of [40] for a detailed analysis of the distribution shape transition at the Hopf bifurcation.

The different methods presented in the previous section are tested with the recorded data sets and

the estimates for the growth rate ν and the nonlinearity κ can be compared to the values obtained

with the direct method which is applied to the noise-free system.

3.2. Deterministic behavior

The noise-free electroacoustic Van der Pol oscillator was investigated in the vicinity of its Hopf

bifurcation by varying the parameter c3, resulting in a variation of β while all the other param-

eters (α, κ, ω0) remain constant. The resulting bifurcation diagram is given in figure 6. The

growth/damping rates for each value of c3 were extracted as explained above and the linear de-

pendance of ν with respect to c3 is confirmed.

3.3. Stochastic forcing and growth rate extraction

The different methods presented to estimate deterministic parameters νe, κe and Γe from stochas-

tically perturbed limit cycles are now applied to experimental data. One has to mention that the

value of c4 – therefore the nonlinearity coefficient κ – was kept constant for all the measurements.

The noise intensity was also kept constant for all the conditions. While the measurement of the
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deterministic values for ν and κ is possible using the noise-free setup, the noise intensity can only

be deduced from the stochastic based approaches. Since it has been kept constant for all the

measurements, the theoretical value has been deduced by averaging the entire set of estimates. It

will be shown that the standard deviation of this set of estimates for Γ is much lower than the

estimate mean. For each of the methods which were applied to acoustic pressure records containing

approximately 40 000 cycles, theoretical models calculated using the deterministic values for ν, κ

and Γ are superimposed to the corresponding experimental data.

When the system is asymptotically stable, it is possible to extract the damping rate by fitting the

power spectral density of the pressure signal with a second order model given in equation (15). This

approach was applied to acoustic pressure signals obtained from the stochastic electroacoustic Van

der Pol oscillator for values of c3 low enough such that ν < 0. Two examples are given in figure 7a

where the experimental power spectral densities (PSD) are superimposed to the theoretical ones.

It has been mentioned that this method works when ν is negative. Another condition which must

be satisfied to apply this method is the following: the noise intensity must be low enough so that

the effect of the cubic nonlinearity of the feedback is negligible.

For the case of linearly unstable system, it has been shown in the previous section that a strategy

based on the linearization of the amplitude equation can be adopted. In this situation, the inverse

of the growth rate is approximately twice the time constant of the amplitude equation (16). This

exponential decay constant characterizes the time taken by the system to recover its limit cycle

amplitude when it has been perturbed. Making use of this information, it is possible to compute

the PSD of the limit cycle amplitude fluctuations and estimate its cut-off frequency to retrieve the

growth rate. Examples are shown in figure 7b where experimental PSD are plotted together with

the theoretical ones. Note that the amplitude fluctuations induced by the white noise perturbation

must be small compared to the deterministic limit cycle amplitude to justify the linearization and

apply this technique successfully.

Another approach based on the solution of the Fokker-Planck equation associated to the ampli-

tude and phase random processes can be used. The extraction of the deterministic quantities is

performed in two steps: Firstly the deterministic limit cycle amplitude A0 and the ratio ν/c0 are

estimated by fitting the density function of the random amplitude process, or alternatively the one

of η, with the theoretical models given in eqs. (22) and (23) respectively. This is exemplified in

Figs. 7c. Secondly the normalized noise intensity c0 is obtained by estimating the variance of the

theoretically gaussian density function of the random process Aϕ̇ as shown in Fig. 7d. Together

with the estimation of ν/c0, it is possible to deduce ν. One can see in figures 7c and 7d that the

distribution obtained from the stochastically perturbed limit cycles closely follow the ones from the

theoretical model. Note that in contrast with the linearization method presented in the previous

paragraph, the assumption A′ ≪ A0 is not required to derive the equations. However, as the ratio

ν/c0 tends to zero, the estimation of the deterministic limit cycle amplitude from the Rayleigh-like

distribution is less and less accurate, which in turns decrease the quality of the estimate of ν.

In Fig. 7c, one can see that when the growth rate is increased the PDF follows the same kind of
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Figure 7: Comparisons between numerical applications of the theoretical models using the deterministic parameters
obtained from the noise-free system (thick lines) and experimental data (thin lines or symbols). (a) Linearly stable
cases: ν < 0. Theoretical curves from eq. (15). The damping rate ν is decreased as the curves darken. (b) PSD of
the limit cycle amplitude fluctuations given from eq. (17). The growth rate ν is increased as the curves darken. (c)
PDF of the amplitude process. The theoretical curves are calculated using eq. (22) (the larger the growth rate, the
darkener the curve). (d) PDF the process Aϕ̇. (e) and (f) Second and first transition moments of the amplitude
process. The theoretical curve for the first moment is computed using eq. (19). Linearly stable and unstable cases
(resp. ν < 0 and ν > 0) are presented (the larger ν the brightener the curve). The symbols are colored as function
of p(A).
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the solutions of the Fokker-Planck equation associated to the amplitude process. Circles: method based on the
estimation of the Fokker-Planck equation coefficients.

behavior as the Rice distribution with a transition from a Rayleigh-like density to a Gaussian-like

one centered on A0. Note that the amplitude term in the exponent in eq. (22) is quartic and not

quadratic as for the Rice distribution.

The last approach is more general and can be equally applied to linearly stable and unstable os-

cillators – i.e. ν being negative or positive – which was not the case for the previous estimation

methods. It has been shown that the convection and diffusion coefficients of the Fokker-Planck

equation associated to the amplitude equation – which are the related to the deterministic and

stochastic parameters of the system – can be estimated through the first and second transition

moments respectively. The method is applied to different time traces recorded at various growth

rates. The results are shown in Fig. 7e and 7f. It is shown that the estimated transition moments

for a series of growth/damping rates match the ones deduced from the noise-free system measure-

ments with a remarkable agreement. Note that although the process η, standing for the acoustic

eigenmode amplitude, can generally be assumed to be Markovian as shown in the previous section,

it is usually difficult in real applications to calculate accurate transition moments for this process

because of sampling rate limitations. Applying this method to the process η itself would be theo-

retically feasible but would give in practice poor quality estimates of the deterministic quantities.

Looking at the corresponding amplitude process A, which is also Markovian and which features a

much slower deterministic dynamics is therefore a good measure to compensate the coarseness of

the recorded data set.

An overview of the estimated values for ν, Γ and κ is finally presented in figure 8. It was shown

that the strategy consisting in estimating the transition moments of the amplitude process is the

most general and provide good estimates of the deterministic quantities. However, the duration

of the signal, its sampling rate and the delay used in the moments calculation affect the statistics

quality as already shown in [33] for the case of a Pitchfork bifurcation. It is therefore interesting

to compare the results obtained with the general method to the ones obtained with the other
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Figure 9: Acoustic pressure signals corresponding to 3 different operating conditions (single parameter variation).
(d) to (f): snapshots of the recorded time traces. The black lines stand for the filtered signal. The band-pass filter
which was used is centered around the dominant peak at ω0. The bandwidth was defined as ∆ω = 0.3ω0. (a) to
(c): corresponding joint PDF computed from the filtered pressure signal which is proportional to η.

approaches in order to get more confidence in the deterministic parameters estimation.

4. Application to engine data

The different extraction methods are now applied to dynamic pressure signals recorded in a gas

turbine combustion chamber. Three different operating conditions have been analyzed, the second

and the last one being out of the nominal operation range. The time traces are presented in figure

9 with the corresponding probability density functions of the joint response process (η, η̇/ω0),

where η is proportional to the acoustic pressure in the combustor band-pass filtered around the

dominant peak. The joint probability density function is a good indicator of the system stability,

with gaussian-like and ring shaped densities for stable and unstable cases respectively.

The growth rate estimation was done using the different methods. For the stable case (figure 9d),

a close-up view on the power spectral density of the signal with its best fit using eq. (15) is shown

in figure 10a. An estimate of the damping rate is obtained from this fit.

The power spectral density of the fluctuating amplitude for the strongest limit cycle (figure 9f) is

presented in figure 10b with the best fitted first order low pass filter, which directly give access to a

growth rate estimate. Note that this strategy does not apply when the normalized noise intensity

is to high with respect to the growth rate which is for example the case for the intermediate

operating condition shown in 9e. The method based on the solutions of the Fokker-Planck equation

associated to the amplitude response process was used for the two cases where the system operates

on a stochastically perturbed limit cycle (see figure 9e and 9f) and the results are shown in figure

10c. Finally, the strategy consisting in fitting the post-processed first transition moment of the

amplitude process is presented in figure 10d. This method, which is the most general, can be

applied to each of the cases presented in figure 9. One can see that the theoretical curves closely

follow the amplitude dependent transition moment.
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Figure 10: Post-processed acoustic pressure data (dashed lines and symbols) plotted together with the corresponding
best fits using theoretical models. (a) Linearly stable operating condition (diagrams (a) and (d) in figure 9). The
PSD of the acoustic pressure was fitted using eq. (15). (b) Linearly unstable condition (diagrams (c) and (f) in
figure 9). PSD of the limit cycle amplitude fluctuations is fitted using eq. (17). (c) Linearly unstable conditions
(diagrams (b)-(e) and (c)-(f) in figure 9 for gray and black curves respectively). The PDF of the amplitude process
were fitted using eq. (22). (d) First transition moment of the amplitude process for the three operating conditions
(a), (b) and (c) shown in figure 9. The theoretical curve is fitted using eq. (19).

The growth rate estimates for the three operating conditions analyzed are presented in table 1,

where the application range of the different approaches is highlighted. It can be concluded that

all the estimates are in very good agreement.

5. Conclusion

Different strategies are proposed to identify deterministic quantities governing stochastically per-

turbed thermoacoustic limit cycles. In gas turbine applications, the knowledge of these parameters

is crucial to properly design damping equipment. It is shown that the identification can be achieved

by considering either the linearized version of the equation governing the limit cycle amplitude or

the solutions of the associated Fokker-Planck equation or its convection and diffusion coefficients.

The possibility to extract these deterministic quantities using several methods brings a high level

of confidence in the estimates that are obtained. In a first step, the different approaches are applied

to experimental data obtained using a well controlled electro-acoustic Van der Pol oscillator. This

is done to demonstrate the accuracy of the growth rate estimates in practical conditions involving

linearly unstable acoustic system, featuring a plurality of eigenmodes, a realistic random excitation

and a non-linear feedback response used to mimic the nonlinear dynamic behavior of the flame. In
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Approach 1 Approach 2 Approach 3 Approach 4
Fig. 10a Fig. 10b Fig. 10c Fig. 10d

case 1, Fig. 9d -4.5 - - -4.2
case 2, Fig. 9e - - 2 2.2
case 3, Fig. 9f - 6.2 6.1 5.9

Table 1: Estimates of the growth rate ν for the three conditions presented in figure 9 using the different theoretical
approaches (see figure 10).

the last section, the theoretical framework presented and validated in the first part is successfully

applied to pulsation data recorded in gas turbine combustion chamber. To the authors’ knowl-

edge it is the first time that combustion instabilities growth rates and nonlinearity coefficients are

quantitatively measured on practical system.
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Appendix

This does not exclude the possibility of so–called non–normal growth of the energy of the system

for instance discussed in e.g. [7] or [18]. This is because the norm of the state vector in eq. (2)

does not represent the energy of the system. In order to analyze the internal energy of the system,

one can always augment the system an additional output vector ηe and matrix Ce such that the

norm of ηe represents the internal energy of the system. However, instead of examining ||eA t|| one

would have to examine ||Ce e
A t|| to find the bounds of the energy. Analogous to [7] the initial state

vector that maximizes the transient energy can be obtained by a singular value decomposition. A

question that is not addressed in that reference is: “Is it possible to bring the system in this

worst-case state?”. This question can be answered by first making sure that all the physical inputs

to the system are correctly captured in the matrix B. Note that initial conditions can always be

modeled as additional inputs, so, without loss of generality one can analyze a system ||Ce e
A t Be||

with zero initial conditions. The answer to the question is then given by the controllability of the

system, which is given by the Gramian of A and Be.
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