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Abstract

This study deals with a generic approach for prediction of pulsation suppression with acoustic

dampers. Although the theory is valid for any self-oscillating system and for any damper type, the

focus in this paper is on suppression of thermoacoustic oscillations using Helmholtz dampers. The

developed theory has been validated using a novel experimental method. In thermoacoustics the

constructive interference between the heat release and the acoustic field is responsible for growth

of acoustic amplitudes. In the newly developed measurement method, this interaction has been

mimicked by a feedback excitation using loudspeakers and microphones. Non-linear time-domain

acoustic network simulations are also used to support the analytical and experimental framework.

1. Introduction

Combustion instabilities are difficult to predict during the development phase of a new burner. If a

combustor yields resonant coupling during conception phase, solutions may be found to efficiently

suppress the pulsations. Addition of dampers is an efficient way to prevent from these self-induced

oscillations [1, 2, 3].

Successful implementation of such passive solution is usually obtained from the adjustment of the

damper eigenfrequency to the unstable mode, where acoustic absorption is maximized, and from

expensive trial-and-error based tests to optimize the number and locations of dampers [4, 5].

Enhancement of modal damping by implementing arrays of dampers has been widely investigated

(e.g. [6]). In a recent study [7], design criteria are proposed in order to maximize the acoustic

absorption of an array of liquid propellant injectors in rocket engines, which can behave as half-wave

resonators in addition to their original function of injection. In another interesting investigation

[8], a general theoretical model allowing to predict the acoustic interaction between an enclosure

and a Helmholtz resonator array is derived and validated with experimental data. In reference [9],

the absorption properties of set of helmholz dampers is experimentally analyzed and it is shown

that it exists an optimum number of resonators to maximize the damping of a given enclosure’s

eigenmode. These studies are concerned with the noise control of naturally “stable” reverberant

enclosures and do not consider the situation of acoustically “unstable” system. Thermoacoustic
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instabilities occuring in combustion chamber is a particular case of such unstable systems, where the

resonant coupling between an acoustic source and the enclosure eigenmodes yield an exponential

growth of acoustic perturbations.

In this context, the present work aims at (1) providing a general theoretical model allowing to

predict the influence of a given set of Helmholtz resonators on a thermoacoustic instability, (2)

validating the model experimentally in a simple configuration and (3) proposing an original, non-

reacting and easy to handle setup to evaluate the ability of dampers to stabilize the system prior to

their implementation. It must be emphasized that while the model validation is done in a cold flow

experiment, the theory does equally apply to non-reactive and reactive situations. An acoustically

unstable system is set up. It can be adjusted to any frequency and growth rate. This is achieved

by making use of a feedback loop where a speaker, which acts as the acoustic source in an enclosure

and is fed by an amplified-delayed microphone signal. The imposed delay and the amplification

factor in the loop allow control of the growth rate, while the frequency of interest is selected by

means of an analog filter in this loop. In this way it is possible to mimic the characteristics of a

given thermoacoustic instability in a simple cold flow setup and test the dampers capabilities.

The paper is organized as follows:

• The theoretical model is derived in the second section. Considering a system with given

thermoacoustics characteristics, i.e. frequency and growth rate, the analytical model provides

the stability properties of the same system equipped with dampers.

• In the third section, the experimental setup is detailed and the measurements are compared

with the theoretical model.

• In the last section, a nonlinear time-domain acoustic network of the experimental setup is

used in order to explain the differences between the analytical predictions and experimental

results.

2. Theoretical model

The sketch given in Fig. 1 presents the connections between fluctuating quantities when thermoa-

coustic instabilities occur in a combustor. The variables ρ, Q′, p′ and u′ respectively designate

the gas density in the combustor volume V , the fluctuating component of the heat release, the

acoustic pressure and the acoustic velocity; s = iω + ν is the Laplace variable, where ω is the

angular frequency. The volumetric fluctuating heat release may be decomposed as Q = Q′

N +Q′

C

where Q′

C is the coherent component which is correlated to the acoustic velocity and/or pressure

through the flame transfer function, and Q′

N the component independent of the acoustics (noise).

The boundary conditions on the surface S − Sd are expressed with the impedance Z. Dampers

featuring an impedance Zd can eventually be applied on the surface Sd.

Standing waves are considered here, and the acoustic variables p′ and u′ can be expressed as a
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Figure 1: Schematic of a thermoacoustic system equipped with a damper.

superposition of expansion functions which constitutes a complete orthonormal basis ψ in the

domain (see [10], p. 554-563). In the frequency domain, it is written as

p̂(s,x) =

∞∑

k=0

ηk(s)ψk(x) and û(s,x) = −
1

sρ̄
∇p̂ = −

1

sρ̄

∞∑

k=0

ηk(s)∇ψk(x). (1)

One can note that the schematic presented in Fig. 1 is a simplified interpretation which does not

include for instance the vortex sound sources or which does not highlight elementary mechanisms

involved in the flame transfer function (vortex flame interaction, equivalence ratio perturbations

triggered by acoustic excitation, etc), but these can of course easily be included in such a general

framework.

We focus now on the transfer functions linking the expansion amplitude vector η = [η1 . . . ηn . . . η∞]

to a function QN of the non-coherent component of fluctuating heat release rate Q̂N , with and

without dampers : η = HwdQN and η = HwodQN .

Choosing a suitable expansion basis and making use of adequate assumptions, it is possible to

derive simple expressions for Hwod and Hwd and this is the purpose of the present section.

The acoustic propagation in the volume V bounded by the surface S is described with 1) the

homogeneous Helmholtz equation in a uniform low Mach flow with a fluctuating heat release

source and 2) the boundary condition on S :

∇2p̂(s,x)−
(s
c̄

)2

p̂(s,x) = −sγ − 1

c̄2
Q̂(s,x) in V, (2a)

and
p̂(s,x)

û(s,x) · n = Z(s,x) on S, (2b)
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where γ is the specific heat ratio, c̄ the mean sound speed, n the outward normal on S and Z the

acoustic impedance. Making use of a Green function, which is defined in the frequency domain by

∇2Ĝ(x|x0)−
(s
c̄

)2

Ĝ(x|x0) = δ(x− x0) in V, (3a)

and ∇Ĝ(x|x0) · n = g(x) on S, (3b)

it is possible to write an expression for the fluctuating pressure at a point x in the domain. To

do so, one has to substract (3a) multiplied by p̂ to (2a) multiplied by Ĝ, integrate the resulting

equation over the volume, make use of the boundary conditions (2b) and (3b), and of the symmetry

property of the Green function Ĝ(x0|x) = Ĝ(x|x0)
1, which yields

p̂(s,x) = −sγ − 1

c̄2

∫

V

Ĝ(x0|x)Q̂(s,x0)dV0+

∫

S

p̂(s,x0)g(x0)dS0

+

∫

S

Ĝ(x0|x)sρ̄
p̂(s,x0)

Z(s,x0)
dS0.

(4)

The Green function is now spanned on an orthonormal basis ψ : Ĝ(x|x0) =
∑

∞

j=0Ajψj(x). The

basis functions ψj are defined as

∇2ψj +
(ωj

c̄

)2

ψj = 0 in V, (5a)

∇ψj · n = g on S,

with

∫

V

ψnψ
∗

mdV = V Λnδnm, and Λn =
1

V

∫

V

|ψn|2dV
(5b)

Replacing Ĝ in (3a) by its expanded form, multiplying by ψ∗

m, integrating over the volume V and

making use of the basis function definition (5a) and of the orthogonality of the basis, one obtains

the coefficient Am, and one can write :

Ĝ(x|x0) =
∞∑

j=0

ψj(x)
ψ∗

j (x0)c̄
2

−V Λj(ω2
j + s2)

(6)

Replacing Ĝ in (4) by the r.h.s. of (6) yield

p̂(s,x) =
∞∑

j=0

ηj(s)ψj(x) (7)

1i.e. the wave observed at x due to a point source at x0 has the same amplitude and relative phase as for the
wave observed at x0 when the point source is located at x
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where the expansion amplitude vector coefficients are defined as solutions of

ηj =
sρ̄ c̄2

s2 + ω2
j

1

V Λj

(
(A)︷ ︸︸ ︷

γ − 1

ρ̄ c̄2

∫

V

Q̂Nψ
∗

j dV +

(B)︷ ︸︸ ︷
γ − 1

ρ̄ c̄2

∫

V

Q̂C(η,ψ)ψ
∗

j dV

− 1

sρ̄

∫

S

g

∞∑

k=0

ηkψkdS

︸ ︷︷ ︸
(C)

−
∫

S−Sd

∑
∞

k=0 ηkψk

Z
ψ∗

j dS

︸ ︷︷ ︸
(D)

−
∫

Sd

∑
∞

k=0 ηkψk

Zd
ψ∗

j dS

︸ ︷︷ ︸
(E)

)

(8)

The infinite set of equations defining the amplitude vector η is general. Whatever the chosen basis

ψ, it is theoretically possible to retrieve the amplitude coefficients (e.g. [13], Appendix F), and it is

thus possible to numerically get approximate solution by considering a finite set of basis functions.

The idea is now to derive a simple analytical formulation of ηj , where the interdependency of the

coefficients is removed, by making use of the following assumptions :

• The functions ψj(x) composing the orthonormal basis ψ are suitably defined to be similar

to the acoustic eigenmodes spatial distribution of the system without acoustic sources.

• From the acoustic viewpoint, the system comprises either quasi-closed or quasi-open bound-

aries, and the definition of ψ yield the integral (C) to vanish2.

• One consider that the thermoacoustic coupling operates on a single eigenmode – the one

featuring the largest linear growth rate for linearly unstable systems (see for example [14]) –

and that one can write ηm ≃ 0 for m 6= j.

• The volume source/sink integral (B) – due to the constructive/destructive interaction be-

tween the coherent fluctuating heat release rate and the acoustics – and the boundary in-

tegral (D) – defined by the actual impedance at the boundaries (S − Sd) – are small, does

not dramatically change the eigenmodes spatial distribution and eigenfrequencies, and can

2For instance, one can consider the simple one-dimensional case of a duct of length L with an acoustic source.
If the duct is closed at both ends – which is not far from the boundary conditions encountered in gas turbine
combustor (high acoustic reflection coefficients of the inlet and of the outlet) – it is appropriate to define the basis
function such as ∇ψj · n = g = 0 at the boundaries, which is satisfied with ψj(x) = cos(xjπ/L). This means that
the fluctuating velocity should tend to zero at the boundaries (see eq. (1)), and g = 0 yields vanishing (C) in eq.
(8).
If the duct is open at both ends – typical configuration of the Rijke tube – it is now appropriate to define the
basis function such as ψj = 0 at the boundaries, which is satisfied with ψj(x) = sin(xjπ/L). This means that the
fluctuating pressure should tend to zero at the boundaries (see eq. (1)), and this also yields vanishing (C) in eq.
(8).
If now the duct is open at one end and closed at the other, it is now appropriate to use the basis function ψj(x) =
sin(x(2j − 1)π/2L) which satisfied ψj = 0 at the first boundary and g = 0 at the second and thus (C)=0.
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be replaced by adding growth/decrease rate coefficient −2νjs in the denominator of the first

r.h.s. fraction (with ωj ≫ νj). This growth rate can be estimated in practical configurations

by using modal identifications techniques from the acoustic pressure measurements.

It can be pointed out that the eigenmodes of a thermoacoustic system are by nature non-normal

[11]. Also, in the general case, it was shown in [12] that systems with complex impedances at

the boundaries admit non-normal eigenmodes. In the present analysis the system eigenmodes

are expanded on an orthonormal basis. Using this Galerkin technique with orthonormal basis

functions ψj does not mean that the eigenmodes will also be orthogonal so eq. 8 is always valid.

However, keeping only one basis function for the instability description and stating that it does

not significantly differs from the unstable eigenmode is an assumption which goes against the

theoretical work presented in refs. [11] and [12]. This assumption is done for two reasons: (1) In

many practical systems, the thermoacoustic coupling is usually weak (ωj ≫ νj), the surface Sd

where dampers with complex impedance are applied is small compared to the overall boundary and

the observed eigenmodes are not much different than the one calculated from non-active flames.

(2) Considering the modal non-normality is mostly useful for linearly stable systems which could

exhibit a non-linear instability due to triggering of periodic stable state by transient linear growth.

In the present analysis we only consider systems which are already unstable and do not admit

nonoscillating equilibria.

The eigenmode amplitude ηj is then given by

ηj(s) ≃
sρ̄ c̄2

s2 − 2νjs+ ω2
j

1

V Λj

(
γ − 1

ρ̄ c̄2

∫

V

Q̂N (s,x)ψ∗

j (x)dV

−
∫

Sd

ηj(s)
|ψj(x)|2
Zd(s,x)

dS

) (9)

Considering now the particular case of nearly closed system (Green function expansion basis defined

with g = 0, yielding (ψj , ωj) ∈ R
2), where Sd = 0, one can write

ηj(s) = HwodQN ,

where Hwod =
s ωj/qj

s2 + s ωj/qj + ω2
j

with qj = −ωj/2νj, (10)

and QN = 1
−2νj

γ−1
V Λj

∫
V
Q̂NψjdV

Since ωj ≫ νj , the denominator of Hwod can be approximated by (s − iωj + νj)(s + iωj + νj).

When νj > 0, and thus qj < 0, the modal amplitude ηj(t) (without dampers) is exponentially

amplified at the rate νj , i.e. the system is linearly unstable, because the real part of the poles of

the characteristic polynomial is positive. Similarly, when qj > 0, the system without dampers is

stable and the perturbations are damped.

A number N of identical damper of Helmholtz type are applied on Sd with NAd = Sd, where Ad

designates the surface of the mouth of a damper. These dampers are located at the coordinates xk
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Figure 2: Block diagrams of the stand alone system and of the damper equipped system.

and are supposed to 1) feature a constant impedance over Ad and 2) be compact with respect to the

wavelength associated to the mode considered (
√
Ad ≪ λj), which means that the eigenfunction

ψj(xk) is also constant over Ad. Combining then (9) and (10), one obtains :

ηj(s) = HwodQN −Hwod

ρ̄ c̄2

ωj/qj

Ad

∑N
k=1 ψ

2
j (xk)

Zd V Λj
ηj(s) (11)

The dampers are designed to suppress the eigenmode corresponding to ψj and are working on

the Helmholtz mode (damped harmonic oscillator) over the frequency range considered. Their

impedance can be written with a classical 2nd order transfer function

1

Zd(s)
=

s ωd/qd
s2 + s ωd/qd + ω2

d

qd Vd ωd

ρ̄d c̄2dAd
(12)

In these expressions, ρ̄d and c̄d designate the mean density and sound speed in the dampers, Vd

and Ad the damper volume and mouth area, and ωd and qd the Helmholtz angular frequency and

the damping factor.

We now introduce ε = (ρ̄d Vd
∑N

k=1 ψ
2
j (xk)/ρ̄ V Λj)

1/2. The nondimensional parameter ε may be

described as a damping efficiency factor depending on the dampers to combustor volume ratio and

on their location with respect to the eigenmode shape similar to ψj . Noting that ρ̄d c̄
2
d ≃ ρ̄ c̄2,

and combining (11) and (12), one finally obtains the link between ηj and QN , which stands for

the closed-loop transfer function Hwd describing the combustor equipped with the dampers. This

closed-loop is presented in Fig. 2, where the dampers act as feedback control.

For a given unstable system featuring a mode shape ψj , an eigenfrequency ωj and a growth rate

νj , it is possible to extract the eigenfrequency ω and growth rate ν corresponding to the system

equipped with dampers, as function of their locations and characteristics i.e. as function of ωd, qd

and ε. The solution s = iω + ν is the eigenvalue of the closed loop system in Fig. 2.

Considering a well instrumented pulsating combustor, the frequency ωj, the growth rate νj and

the mode shape ψj can be deduced by means of dynamic pressure sensors. It is then possible to

develop dampers featuring an impedance Zd, and use the model to predict how many of these

dampers are required and where they have to be implemented in order to stabilize the system

at the frequency ωj . In other words, if the eigenvalue of the closed loop features a negative real

This is a pre-print version. Published in Journal of Sound and Vibration (2012) Vol. 331 (12), p. 2753-2763,

DOI: 10.1016/j.jsv.2012.02.005



8

part ν < 0, the system which was initially unstable νj > 0 is predicted to be stable with the

dampers. The objective is now to demonstrate that growth rate reduction, due to the damper

implementation, predicted by the model is in agreement with what is observed experimentally.

3. Experimental setup

While the theoretical model has a general feature and can be applied to any combustor and eigen-

mode shape, the validation is here carried out in a basic configuration where a rectangular cavity,

with its longitudinal eigenmodes, is considered. This configuration allows to validate the model

in a simpler way. In order to mimic thermoacoustic instabilities, an electro-acoustic feedback is

implemented in a closed tube to generate self-induced oscillations at the desired frequency and

growth rate.

The setup is sketched in Fig. 3. The left side of tube is equipped with a low porosity perforated

plate featuring a high reflection coefficient (R1 ≃ 0.95 over the frequency range considered, with

and without flow) followed by an anechoic end (made of acoustic foam) and an exhaust pipe. On

the right side is mounted either a wall (R2 = 1) or a damper with an air inlet. The length of the

resulting cavity, in which the acoustic modes are considered, is L, and the square duct side is equal

to l.

A wall equipped with a set of Nd tiny Helmholtz resonators constitutes the damper. Their volume

and mouth area are Vd and Ad. The reflection coefficient of the damper Rd = (Zd−ρc)/(Zd+ρc) =

g/f , where f and g are the upward and downward Riemann invariants (p′/ρc = f+g and u′ = f−g),
was measured by means of the multi-microphone technique and is presented in Fig. 4. The pa-

rameters ωd and qd of the second order model of the resonator impedance, given in eq. (12), are

optimized such that the reflection coefficient model best fits the measured data (see green line

in Fig. 4 where qd = 2.2). It appears that these optimum parameters are of the order of those

that can be obtained from the existing literature (e.g. [15] p. 137-140) and are therefore used

for the calculations performed in the last section. In order to generate the self-induced acoustic

oscillations in the cavity of length L, a feedback loop is used as shown in Fig. 3. A switch button

is used to run the feedback loop. When it is switched on, the pressure signal recorded with the

microphone is filtered (Analog filter, Krohn-Hite 3343), amplified (1st channel of the Compressor,

Alesis 3630), delayed (Delay generator, Yamaha D5000), limited when the amplitude exceeds a

defined threshold (2nd channel of the Compressor, Alesis 3630) and used to feed the compression

driver which is plugged on the other side of the impedance tube. When the loop is switched

on, several eigenmodes are unstable. We consider here the longitudinal modes : eigenfrequency

fj = ωj/2π = nc/2L (with n = 1, 2, ...), where fj < c/2l. These linearly unstable modes feature

growth rates which depend on the amplification factor and on the delay imposed. Without any

filter in the feedback loop, the most unstable one, i.e. the one featuring the largest linear growth

rate, would start to growth. The filter is indeed used to select unstable modes that are in the

frequency range of interest. The amplitude limiter is included in the loop in order 1) to reproduce
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Figure 3: Sketch of the experimental setup used to produce self-induced acoustic oscillations.

nonlinear flame response saturation for high acoustic levels, and 2) from a practical viewpoint,

to avoid breaking the compression driver with an overload due to the exponential growth of the

feeding signal for unstable cases. Two unstable modes (ωj/ωd ≃ 0.85 and ωj/ωd ≃ 1.14) will be

considered for the validation of the theoretical model given in Fig. 2. The electro-acoustic instabil-

ities are first run without dampers, at an eigenfrequency fj selected with the analog filter, and for

different growth rates νj which are adjusted by changing the feedback loop delay τF . In a second

step, setting the same hardware parameters – i.e. the ones used to produce self-induce oscillation

at ωj and νj – the loop is run in presence of damper in order to obtain the growth rate reduction

due to the damper acoustic energy absorption.

For this experimental validation, it is more convenient to measure growth rates (ν > 0) than de-

crease rate (ν < 0), so a high gain in the feedback-loop is required to get self-induced oscillations

for both situations. In other words, at the eigenfrequencies of interest, the damper is not effective

enough to stabilize the system and it is possible to quantitatively measure the growth rate reduc-

tion from the case without to the case with damper.

An example of measurement with and without damper for the eigenfrequency ωj/ωd ≃ 1.14 is

given in Fig. 5. Growth rate measurements are done by taking the mean increase over the linear

growth phase. In Fig. 5, The growth rate reduction is clearly exemplified: νwod/ωd ≃ 9 × 10−3

without damper and νwd/ωd ≃ 3.6×10−3 with damper where the phase delay is set to ωdτF = 3.6.

Note, there is obviously a modulation of the amplitude superimposed to the exponential growth

and to the limit cycle. This phenomenon will be discussed and explained in the following section.

In particular, it will be shown that the mean linear growth rates (red bold lines in Fig. 5) can be

used for the growth rate reduction analysis.

Growth rates have been measured in the same way for a set of feedback-loop delays and the results
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are reported and compared to the theoretical model in Fig. 6. The growth rates with damper νwd

are plotted as function of the ones without damper νwod for several delays and for two eigenmodes

(ωj/ωd ≃ 0.85 and ωj/ωd ≃ 1.14). For each delay, four measurements were done, providing a
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Figure 6: Experimental results : (a) the eigenfrequency corresponds to ωj/ωd ≃ 0.85 and (b) to ωj/ωd ≃ 1.14. Each
colored region in the upper diagrams corresponds to a given delay, is centered at the mean coordinate [νwod; νwd]
obtained from 4 successive measurements, with an extent defined by the standard deviation.

mean growth rate with a standard deviation. Both frequencies and growth rates are dependent

on the imposed delays. The theoretical predictions (bold dark lines) are obtained from the model

(see Fig. 2) by calculating the closed-loop system eigenvalues while fixing : ωd; ωj/ωd = 0.85;

qj ∈] − ∞;−42.5] ⇔ νj/ωd ∈ [0; 0.01] (resp. qj ∈] − ∞;−57] for ωj/ωd = 1.14); qd = 2.2;

ε = 8.7× 10−2 where Λj = 1/V
∫
V
ψ2
j dV = 1/L

∫ L

0
cos2(nπx/L)dx = 1/2.

In contrast with the measurements, for which the trajectories defined by the points [νwod(τF ), νwd(τF )]

feature elliptical shapes, the model predictions exhibit linear relationships between νwd and νwod.

The major axis of the ellipses coincide with the bold dark lines calculated from the theoretical

model. These results indicates that the model is apparently able to provide good estimates the

mean growth rate reduction.

In the next section, acoustic network simulations of the experimental setup are presented. Simu-

lating the delayed electro-acoustic feedback used in the experiments will allow to:

1. Explain the amplitude modulation during the exponential growth shown in Fig. 5 and justify

the use of the measured mean linear growth rate for the comparison with the theoretical

model.

2. Get a better understanding of the elliptical trajectories obtained when the measured growth

rates are plotted against each other, and give additional informations on the model capabil-

ities and limitations.

4. Acoustic network simulations of the experimental configuration

A simplified acoustic network representation of the experimental setup is now considered (see

Fig. 7). The network is built using the Simulink R© environment. Note, it is not intended here

to accurately represent the experimental setup but more to get a better understanding of the
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Figure 7: Acoustic network model of the experimental setup used to compute time domain simulations (Simulink
representation). R1 and R2 are the upstream and downstream boundary conditions of the cavity (see Fig. 3), f and
g the Rieman invariants at the different locations. Transport delay blocks are used to model the delays associated
to the acoustic wave propagation in the cavity τaci = Li/c and the delay imposed in the feedback loop τF . α is the
amplification factor.

instability mechanism. For instance, the electro-acoustic conversion of the compression driver is

simply modeled by an acoustic velocity source in the network. The normalised pressure p′d/ρc =

fd + gd measured with the microphone, is delayed by τF , amplified by a factor α (including the

Pascal/Voltage conversion and the different gains in the loop, including the speakers transfer

function), limited when it exceeds a defined threshold and sent back in the duct from the speaker

as an acoustic velocity source3 (conversion factor also included in α). The NS block in the feedback

loop stands for the filtered noise source. The upstream reflection coefficicient can be either set to 1

for the wall boundary condition, or to R2 = Rd = (Zd− ρc)/(Zd+ ρc) with Zd defined in Eq. (12),

for the damper boundary condition.

An example of time domain simulation of the network presented in Fig. 7 is given in Fig. 8. It

was done with R1 = 0.95, R2 = 1, α = 0.2 and ωdτF = 7.2. The noise source was filtered with a

narrow bandpass filter (-3dB attenuation cut-off frequencies : ω1/ωd = 0.82 and ω2/ωd = 0.88).

Under these conditions, the system is unstable and one can see the exponential growth at a rate

of νj/ωd = 2.7× 10−3 of the eigenmode at the frequency ωj/ωd = 0.84, followed by the saturation

due to the amplitude limiter in the loop. The same simulation was done with a wider band-pass

filter (ω1/ωd = 0.78 and ω2/ωd = 0.92). The resulting signal, given in Fig. 8, shows that

3One can write at the speaker location

fc = fb + u′F /2 and gb = gc + u′F /2,

Adding these two equations, one gets the mass flow conservation

fc − gc = fb − gb + u′F ⇔ u′c = u′b + u′F

where u′F is the acoustic velocity source provided by the speaker.
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Figure 8: (a) Narrow band noise source (ω1/ωd = 0.82 and ω2/ωd = 0.88). (b) Wider band noise source (ω1/ωd =
0.78 and ω2/ωd = 0.92). Time domain simulation results. Lower subfigures : (1) grey thin line : pressure signal,
(2) black thin line : amplitude deduced from the pressure Hilbert transform |H(Re(p′))|, (3) red bold line : fitted
exponential growth. Upper subfigures : (2) black thin line : logarithm of the amplitude, (2) red bold line : fitted
logarithm of the exponential growth ⇒ linear evolution and (3) amplitude spectrum of the pressure.

1. The exponential growth and the limit cycle feature a low frequency amplitude modulation,

2. the mean growth rate remains the same as the one obtained with a narrow band filtered noise

source.

The same kind of amplitude modulation was observed experimentally (see Fig. 5). It can therefore

be assumed that the actual width of the analog band-pass filter used in the experiments is not

narrow enough to prevent from this phenomenon. Moreover, it was relevant in the previous section

to use the mean growth rates extracted from the modulated growths, since it is shown here that

the ones extracted from pure exponential growths and obtained with an “ideal” filter would be the

same.

Another way of extracting the growth rate νj/ωd = 2.7 × 10−3, is to compute the eigenvalues

of the network presented in Fig. 7 and get the imaginary part of the one corresponding to the

eigenfrequency ωj/ωd = 0.84. This was done for several delays τF and for both condition R2 = 1

and R2 = Rd. The growth rates with damper νwd of the mode featuring an eigenfrequency close

to ωj/ωd = 0.84, are plotted against the ones without damper νwod for several delays in Fig. 9

(delay increase : color darken). As explained in the figure’s caption, the shaded regions define the

stability regions, with linearly unstable (resp. stable) regions when the growth rate are positive

(resp. negative). The theoretical predictions (bold dark line) are calculated for ωj/ωd = 0.84,

νj/ωd ∈ [−0.015; 0.015], qd = 2.2 and ε = 8.7× 10−2.

These computations were done for two different amplification factor α = 0.1 and α = 0.6 (Fig. 9).

The following conclusions can be sorted out from these numerical results :

1. For both cases, an excellent agreement is found between the theoretical predictions and the

acoustic network model results.
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Figure 9: (a) Small amplification factor (α = 0.1). (b) Large amplification factor (α = 0.6). Damping efficiency
prediction of the damper obtained from the theoretical model (bold black lines), and from the acoustic network
description of the experimental setup as colored circles. Shaded regions: Uwod-Uwd for Unstable without damper
and Unstable with damper, Uwod-Swd for Unstable without damper and Stable with damper, Swod-Swd for Stable
without damper and Stable with damper.

2. For low feedback-loop amplification factor, since the damping is efficient (≈ 5×10−3 reduction

due to the damper), the growth rates of the system with damper are always negative meaning

that the system is linearly stable for all delays τF .

3. For large feedback amplication (α = 0.6 in Fig. 9, right diagram), the system is still unstable

with the dampers for a range of delays, and the elliptical shape of the trajectory can be

clearly identified.

The elliptic-like deviation is all the more marked when the gain is large. This observation allows

to explain the experimental results considering that the gain used for the measurements were high

in order to get solutions in the “Unstable without damper and Unstable with damper” region.

It is now interesting to focus on these elliptic trajectories obtained when plotting the growth rates

against each other, and try to explain this latter result by means of a linearized analytical model of

this particular one dimensional electro-acoustic system. It can be shown that when R1 = R2 = 1

and L2 = L (i.e. L1 = L3 = 0), the first order approximation of the eigenfrequency of the

system4 is written as ω = ω0 + (−1)nα(− sin(ω0τF ) + i cos(ω0τF ))/τL, where ω0 = 2πf0 = ncπ/L.

This result highlights the fact that both frequency Re(ω) and growth rate Im(ω) depend on the

feedback-loop delay and on the amplification factor. The expression for the growth rate is then :

4With L1 = L3 = 0 and R1 = R2 = 1, one can write fd = fe = ge = gd and gb = ga = fa = fb and also
fc = fb + fdα exp(iωτF ), gc = fb − fdα exp(iωτF ), fc = exp(−iωτL)fd and gc = exp(iωτL)fd, which yields

(

1 αeiωτF − e−iωτL

1 −αeiωτF − eiωτL

)(

fb
fd

)

=

(

0
0

)

The non-trivial solutions are obtained when the matrix determinant G satisfy G(ω, α) = αeiωτF + i sin(ωτL) = 0.
Considering the eigenfrequency ω0 such as G(ω0, 0) = 0, a gain α ≪ 1, and defining ω = ω0 + ω1, where ω1 ≪ ω0,
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νwod = (−1)nα/τL cos(ω0,wodτF ), with the subscript “wod” standing for the case without damper.

The same kind of dependence is observed when the case R2 = Rd exp(iϕd) is considered. It is

therefore possible to perform the same derivation for any complex reflection coefficient R2. The

eigenfrequency is now ω0,wd = ω0,wod − (ϕd + i ln(1/Rd))/2τL. It is then possible to express the

growth rate of the system with damper as function of the growth rate without damper 5:

νwd = C1+C2

(
C3νwod + C4

√
1− (τL/α)2ν2wod

)

where C1 = − ln(1/Rd)

2τL
, C2 = (4Rd)

−1/2, C3 = (1 +Rd) cos(ϕd/2)

and C4 = (−1)n
α

τL
(1 −Rd) sin(ϕd/2)

(13)

This relationship between the growth rate with and without damper is a conic section, which ex-

plains the elliptical shape obtained. One can note that the evaluation of this first order derivation,

not shown here, matches with the numerical simulation results shown in Fig. 9.

It has been shown that the stability nature of the electro-acoustic system which is considered in the

previous sections can be modeled with simple equations. In the case of practical large-scale com-

bustors, for which testing of dampers is costly, such basic description is generally not so accurate.

The use of advanced thermo-acoustic tools including FEM analysis, lumped elements models and

flame transfer functions deduced from CFD or experiments [16] is preferred and provide reliable

predictions. The theoretical model proposed in the first section, which combines system identifi-

cation and control approach, is an alternative strategy which requires less computing resources,

can be applied to any complex thermo-acoustic system and provide good estimations of dampers

performances.

5. Conclusion

A theoretical model describing the influence of damper addition on an initially unstable thermoa-

coustic system is presented. The parameters required to use the model for practical configurations

like gas turbine combustors can be obtained by means of modal identification techniques. The

eigenfrequencies and growth rates of the unstable system are extracted in this way, and the damper

design and implementation can be optimized by estimating the growth rate reduction which would

be obtained with these dampers. This model is first validated experimentally by means of an

newly developped testing method. A thermoacoustic instability is mimicked by using an unstable

electro-acoustic system in order to investigate the influence of dampers addition on its stability.

one can write

ω1 = −α

(

∂G/∂α

∂G/∂ω

)

ω0,0

which yields ω = ω0 + i
α

τL
eiω0τF e−iω0τL

5This expression is a simplified form obtained by considering τF ≪ τL which valid for high order modes.
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It consists in supplying a loudspeaker with a filtered-amplified-delayed microphone signal in a

resonant cavity to reproduce the acoustic characteristics of a given thermoacoustic instability. It

appears from the experiments that when the growth rates with and without damper are plotted

against each other, they form an elongated ellipse. It is shown that the theory predicts a straight

line which coincide with the major axis of this latter ellipse. This result indicates that the model

successfully provides the mean growth rate reduction induced by the damper addition. Experimen-

tal results are supported by acoustic network simulations which are used to explain the differences

between theoretical and measured growth rates. It is shown that the lower the amplification, the

more narrow is the ellipse, and the better is the theoretical straight line approximation. One can

incidentally note that one of the underlying assumptions of the theory is that the amplification is

sufficiently weak, and hence does not influence the resonance frequency.

Beyond this model validation, the present experimental technique constitutes a new way to assess

acoustic dampers prior to engine application. The work presented here focus on linear regimes,

nevertheless, the damping performances in case of nonlinear regimes (strong acoustic levels which

alter the flame response and modify the acoustic energy absorption characteristics of the dampers)

can also be analysed with this new method. Also, despite the experimental validation is here

performed with a simple non-reactive electro-acoustic system, the theoretical model can be used

to estimate growth rate reductions in the case of complex geometries and reactive flows.
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