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Abstract

This paper deals with the dynamics of standing and rotating azimuthal thermoacoustic modes in

annular combustion chambers. Simultaneous acoustic measurements have been made at multiple

circumferential positions in an annular gas turbine combustion chamber. A detailed statistical

analysis of the spatial Fourier amplitudes extracted from these data reveals that the acoustic modes

are continously switching between standing, clockwise and counter clockwise traveling waves. A

theoretical framework from which the modal dynamics can be explained is proposed and supported

by real gas turbine data. The stochastic differential equations that govern these systems have been

derived and used as a basis for system identification of the measured engine data. The model

describes the probabilities of the two azimuthal wave components as a function of the random

source intensity, the asymmetry in the system and the strength of the thermo-acoustic interaction.

The solution of the simplified system is in good agreement with experimental observations on a

gas turbine combustion chamber.
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1. Introduction

In gas turbine combustors, thermoacoustic couplings can yield self-sustained dynamic pressure os-

cillations which are unwanted because they induce structural vibrations of the combustion cham-

ber’s components. This phenomenon is induced by constructive interactions between the flames

and the acoustic field which occur when heat release and pressure fluctuations satisfy a phase differ-

ence relationship referred to as the Rayleigh’s criterion (1896). For annular combustion chambers

constituting a widespread design strategy (e.g. Eroglu et al. 2009), these acoustic limit cycles

often correspond to azimuthal modes. In these situations the combustion chamber circumference

is a multiple of the mode wavelength. Several numerical, experimental or theoretical studies have

been dedicated to these azimuthal thermoacoustic modes over the last decade in order to better

understand and control them to further increase the operational flexibility of the gas turbines.
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Based on practical observations, [12] and [34] concluded from time-averaged measurements that

both dominantly standing or rotating modes can be found depending on the gas turbine operating

conditions or burners arrangement. Other studies carried out using low-order thermoacoustic net-

work simulations (see Evesque et al. 2003; Schuermans et al. 2006; Morgans and Stow 2007; Stow

and Dowling 2009) or deriving nonlinear analytical models (Schuermans et al. 2006; Noiray et al.

2011) shed some light on the dynamic nature of the azimuthal modes. In particular, it is predicted

that for a uniform distribution of identical flames along the circumference of the chamber, the

thermoacoustic coupling yields rotating type limit cycles due to modal coupling induced by flame

response nonlinearities.

The main steps of the analytical approach proposed by [24] are now shortly recalled. Considering

the periodic nature of annular geometries, it is natural to decompose the acoustic pressure field p

as a Fourier series:

p(r, θ, z, t) =
∞∑

m=1

µm,a(t) fm(r, z) cos(mθ) + µm,b(t) fm(r, z) sin(mθ), (1)

p(θ, t) =

∞∑

m=1

ηm,a(t) cos(mθ) + ηm,b(t) sin(mθ), (2)

where t, θ, r and z are the time, the azimuthal angle, the radial and axial coordinate. The

function fm(r, z) describes the dependence of the acoustic field in radial and axial direction. The

time-dependent Fourier coefficients are denoted by µm,a and µm,b. The focus of this study is

the azimuthal dependence of the acoustic field. Because all measurements and analysis in this

paper are done for one fixed value of r and z, the definitions ηm,a(t) = µm,a(t) fm(r, z) and

ηm,b(t) = µm,b(t) fm(r, z) will be used in the remainder of this paper.

The temporal Fourier transforms of ηm,a(t) and ηm,b(t) generally show multiple distinct maxima.

The frequencies at which these maxima occur are associated with the acoustic modes of the annular

combustion chamber.

The flames which are distributed along the circumference can interact constructively with the

combustion chamber’s acoustics. In this case the system can be brought onto a limit cycle. This is

usually characterized by one pair of dominant azimuthal Fourier coefficients ηn,a(t) and ηn,b(t), with

a dominant limit cycle frequency ωn. This type of behaviour is typical of weakly damped/amplified

oscillators which feature two different time scales: the oscillation frequency Tn = 2π/ωn and the

relaxation time which is associated to the dynamics of the amplitude variations and which is much

longer than Tn. Therefore the space–time dependence of the acoustic field can be reasonably

approximated by:

p(θ, t) ≃ ηa(t) cos(nθ) + ηb(t) sin(nθ). (3)

with

ηa(t) = A(t) cos(ωnt+ ϕa(t)) (4)

ηb(t) = B(t) cos(ωnt+ ϕb(t)) (5)
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where A, B, ϕa and ϕb are slowly varying functions with respect to the angular frequency ωn. It is

convenient to make use of the phase difference φ = ϕa−ϕb in order to best characterize the modal

dynamics. Note that the envelopes A and B can be extracted by taking the Hilbert transform of

ηa and ηb as it will be done in the following sections.

Using a deterministic approach, [24] shown that when the flames are identical and uniformly

distributed along the annular combustion chamber, the stable limit cycle is given by A(t) = B(t) =

A0 and φ(t) = ±π/2 (mod 2π) which corresponds to a purely left or right spinning mode:

p(θ, t) = A0 cos(ωnt± nθ). (6)

It is also shown in that study that mixed-type standing/spinning (A 6= B) modes or even purely

standing modes (A = 0) or (B = 0) will establish in the annular combustion chamber if the coupling

strength is not uniform along the circumference. Note that these predictions are in agreement with

the ones from [19] which are obtained by considering eigenvalue degeneracy due to the action of a

symmetry group (see also Moeck et al. 2010 and Moeck 2010).

Recently, these conclusions are open again to question by [28] (see also [42]) as a result of Large

Eddy Simulations of a full annular combustion chamber. One can besides refer to [37] and [41].

In the work from [28] and [42], the simulated time corresponds to approximately hundred acoustic

cycles during which the first azimuthal mode is standing for the first and last forty periods and

rotates in between. The authors of the latter studies state that “the underlying mechanisms

driving the transition between rotating and standing modes are still not clear”. Considering that

the simulated operating conditions are kept constant and that the burners are identical and evenly

distributed in the annular chamber, the analytical model proposed by [24] has two solutions:

purely left and purely right rotating modes. This is in agreement with the studies carried out by

[33], [21] and [38] but not consistent with the aforementioned LES results. Nevertheless, it was

already mentioned by [24] that this deterministic model cannot describe the switching between the

different solutions and that the background noise from the turbulent reactive flow might influence

significantly the modal dynamics. In this context, the present study aim at reconciling real gas

turbine data and theoretical predictions by including into the model the stochastic forcing terms

corresponding to the combustion noise.

2. Observations

It is first interesting to present measurements from a real combustor in order to give a better picture

of the actual dynamics of the azimuthal modes in annular combustion chambers. This is done for

two off-design operating conditions respectively featuring self-sustained acoustic oscillations of the

first and second azimuthal acoustic modes. Indeed for each of these cases, there is one mode which

dominates the acoustic spectrum as exemplified in figure 1 for the operating condition where the

first azimuthal acoustic mode governs the acoustic signature of the chamber. Dynamic pressure

sensors were implemented in the combustion chamber at different azimuthal positions but identical
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Figure 1: Power spectral densities of the acoustic signals recorded with the dynamic pressure sensors DPS 1 and
2 (black and grey respectively) at the off-design operating condition for which the 1st azimuthal acoustic mode
governs the acoustic field.

axial and radial positions as shown in fig. 2(a) and 2(d). Taking the signals from these sensors it is

possible to extract the time resolved Fourier components ηa and ηb corresponding to the dominant

mode by using the following approximation:

ηa(t) =
1

π

∫ +π

−π

p(θ, t) cos(nθ) dθ ≈
2

K

K∑

k=1

p(θk, t) cos(nθk) (7)

ηb(t) =
1

π

∫ +π

−π

p(θ, t) sin(nθ) dθ ≈
2

K

K∑

k=1

p(θk, t) sin(nθk) (8)

Note that the azimuthal origin is chosen such that the coherence between the Fourier components

is minimized in order to properly identify the principal axes of the modes. For the two conditions

where the first and second modes respectively govern the system dynamics, the reconstructed

pressure fields at arbitrary points in time are shown in fig. 2(a) and 2(d). The raw signals from

two of the dynamic pressure sensors are shown in fig. 2(b) and 2(e). The time-resolved slowly

varying amplitudes can then be extracted by taking the absolute value of the analytical Fourier

coefficients obtained by Hilbert transform: A(t) = |ηa(t) + iη̃a(t)| and B(t) = |ηb(t) + iη̃b(t)|.

The modal phase difference φ(t) = ϕa(t)− ϕb(t) is obtained from ϕa(t) = arg(ηa(t) + iη̃a(t)) and

ϕb(t) = arg(ηb(t)+iη̃b(t)). The slowly varying amplitudes are plotted in fig. 2(b) and 2(e) together

with the raw signals over 15 cycles and during a longer interval in fig. 2(c) and 2(f).

A purely standing limit cycle oscillation would be characterised by a constant value of the modal

amplitude A and zero amplitude B (or vice versa). A purely rotating mode would be characterised

by equal amplitudes A and B with a constant phase difference of +π/2 for clockwise modes and

−π/2 for counter–clockwise rotating modes. So, it’s clear from fig. 2(c) and 2(f) that the acoustic

mode is neither a purely standing wave nor a purely rotating mode, but that it features a stochastic

switching between modes. This conclusion was already drawn by [24] based on advanced thermoa-

coustic network simulations of a gas turbine combustor: the intense background noise produced by
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Figure 2: Characteristics of the first and second azimuthal Fourier amplitudes observed in the annular combustion
chamber at two different off-design operating conditions (resp. (a) to (c) and (d) to (f)). Diagrams (a) and (d):
Reconstructed acoustic pressure distribution at a given instant. The black lines are scaled relative to the amplitude
of the raw signals measured by means of the seven dynamic pressure sensors (DPS). Diagrams (b) and (e):
Short samples of the raw signals from DSP 1 and 2 plotted together with the extracted modal amplitudes A and
B. Diagrams (c) and (f): Same as (b) and (e) on a longer time interval. Time is scaled relative to the acoustic
periods T1 = 1/f1 (see figure 1) and T2 = 1/f2.
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the highly turbulent reactive flow in the combustion chamber dramatically influences the modal

dynamics.

In order to get insights into the stochastic behavior of the amplitudes A and B presented in fig. 2(c)

and 2(f) and of the phase difference φ , the corresponding joint probability distributions are shown

in fig. 3. One can see in fig. 3(a) and in fig. 3(c) that for the two off-design operating conditions each

characterized by the presence of a dominant self-sustained acoustic mode, the modal amplitudes A

and B take values which are spread around a well-defined probability maximum. If this maximum

would be located on the diagonal A = B in these figures, then this would indicate that the most

probable mode is a rotating mode. A predominantly standing mode would be characterized by a

maximum on one of the axes. In these particular configurations, the maximum is neither located

on the principal diagonal nor on one of the axis. In the deterministic framework, the case A 6= B

can be desribed as a partly standing, partly rotating mode. As it has been shown by [24], this is

due to a non-uniform distribution of the acoustic-flame interaction strength.

Note that the spread is wider for the operating condition governed by the first azimuthal mode

which can be explained by a relatively stronger background noise. In fig. 3(b) and in fig. 3(d), one

can observe that the most probable phase difference φ is approximately equal to ±π/2. For a hypo-

thetical case where the modal amplitudes would be equal and constant, having a phase difference

of plus or minus π/2 respectively means that the mode spins in the clockwise or counter-clockwise

direction. In the case of the dominant second azimuthal mode, one can see that the preferred

spinning direction is clearly counter-clockwise. Even though the azimuthal velocity component ūθ

is much lower than the axial one ūz with ūθ ≪ ūz ≪ c, c being the speed of sound, a possible

explanation could be the swirl direction of the hot gas flow in the annular chamber.

These observations highlight the unquestionable gap between the fixed amplitudes predicted from

the deterministic model and the strongly fluctuating ones observed in a real gas turbine combustion

chamber. In the following section, one derives a theoretical model which allows to account for the

influence of the background noise and to explain the observations.

3. Theoretical model

The aim of this study is to analyze the modal dynamics in annular combustion chambers subject

to thermoacoustic coupling. Therefore a model will be derived that is as simple as possible, but

which captures the essential modal dynamics. Note that it is not the aim here to present a model

to predict linear stability or limit cycles, but rather to derive a set of equations that describe the

observed modal dynamics. Unknown coefficients in the model will then be obtained by means of

system identification methods with measured engine data as an input.

In annular combustion chambers, the three dimensional acoustic modes satisfying the Laplace

equation which may be used to expand the pressure field can be expressed in polar coordinate as

ψm,a = fm(r, z) cos(mθ) and ψm,b = fm(r, z) sin(mθ). In order to simplify the equations in the
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Figure 3: Left and right diagrams correspond to the first and second azimuthal modes observed in the annular
combustion chamber at two distinct off-design operating conditions. Diagrams (a) and (c): Bivariate density
functions of the modal amplitudes A and B (same color scale for (a) and (c)). Diagrams (b) and (d): Bivariate
density functions of the modal amplitude A and the phase difference φ (same color scale for (b) and (d)). The p.d.f.
are calculated from signals corresponding to approximately 6000 acoustic periods.
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subsequent analysis, for which the focus is put on the azimuthal dynamics of the acoustic field, the

radial and axial dependances of ψm,a and ψm,b are not considered, i.e. fm(r, z) = 1. Nevertheless

this analysis can be equally applied to three dimensional modal structures as it is shown by [23].

The following wave equation, including source and damping terms is therefore considered

∂2p

∂t2
+ α

∂p

∂t
−
c2

R2

∂2p

∂θ2
=
∂Q

∂t
, (9)

where α is the damping factor, c the sound speed, R the mean radius of the annular combustor

and Q the normalized heat release rate. In practical systems, there can be locally considerable

temperature gradients, but globally the dispersion is negligible for the first azimuthal modes. For

instance, in the work from [42] the acoustic pressure is quasi-sinusoidal along the azimuthal coor-

dinate and the influence of the periodic temperature variations between adjacent burners on the

wave propagation is not detectable (see figures 5, 7 and 9 in the aforementioned study). One can

also refer to [24] for more explanations about this approximation.

Thermoacoustic interaction becomes constructive when a phase relationship between acoustic pres-

sure and fluctuating heat release rate – referred to as Rayleigh criterion – is satisfied. This coupling

results from very complex mechanisms linking acoustic waves to flame dynamics via for instance

acoustically triggered equivalence ratio fluctuations or vortex-flame interactions. It is often conve-

nient to describe the acoustic-flame coupling in the frequency domain and write that the fluctuating

heat release rate depends on the acoustic quantities via a flame transfer function:

Q̂ = Fu(ω)û+ Fp(ω)p̂, (10)

where u is the acoustic velocity. Replacing û by p̂/Zb where Zb is the burner impedance, one get

Q̂ =

(
Fu(ω)

Zb(ω)
+ Fp(ω)

)

p̂ = G(ω)p̂. (11)

The flame transfer function is usually a smooth function. Indeed it is possible to approximate G(ω)

by a complex constant β + i γ for frequencies which are close to some frequency ωn of interest.

This approximation is generally valid on a frequency range extending over the peak width. In the

time domain, eq. (11) can therefore be approximated by

Q = βp+
γ

ωn

∂p

∂t
(12)

The first R.H.S. term will act on the damping in (9) and it can be positive or negative respectively

making the system linearly unstable or stable. The second term will have an influence on the

system’s oscillation frequency. This effect will be neglected in the subsequent analysis because in

practical systems, the eigenfrequencies of the combustor exhibiting thermoacoustic coupling are

very close to the ones of the combustor without heat release source term. One can consequently

keep Q = βp as a good description of the flame response to acoustic perturbations where β

stands for the effective linear dependance and contains the influence of convective delays and
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amplification factors of the underlying complex mechanisms. This relationship is valid for the case

of small perturbations, however it is known that when the acoustic amplitude become large the

heat release rate fluctuations do not follow the excitation and saturation mechanisms take place.

For instance, the shear layer receptivity can play a crucial role as demonstrated in the outstanding

work reported by [25]. As a first approximation, this nonlinearity can be accounted for using a

third order term in the last-mentioned relationship:

Q = β p− κ p3. (13)

Note that the second and fourth order terms would anyway vanish in the subsequent analysis as

shown by [23]. Replacing the expressions for p and Q given in eqs. (3) and (13) into eq. (9),

multiplying both sides by cos(nθ) and integrating with respect to θ between 0 and 2π, one obtains

the autonomous ordinary differential equation governing ηa. Applying the same procedure with

sin(nθ) yields the one for ηb. The resulting system of coupled nonlinear equations is

η̈a + ω2
n ηa = (β − α) η̇a − 3κ

(
η̇a(3η

2
a + η2b ) + 2η̇bηaηb

)
/4, (14)

η̈b + ω2
n ηb = (β − α) η̇b − 3κ

(
η̇b(3η

2
b + η2a) + 2η̇aηaηb

)
/4, (15)

where ωn = nc/R. The stability of this system as been investigated by [24]. However the conclu-

sions related to the dynamic nature of the eigenmodes are only valid for the case of infinitely small

perturbations of the limit cycles. As shown in the previous section, the deterministic approach

cannot properly describe the actual modal dynamics encountered in gas turbine combustors. This

is why the stochastic forcing produced by the highly turbulent reactive flow must be introduced

in the model. Note that the influence of this random excitation on thermo-acoustic couplings has

only been considered in a limited number of studies ([6, 15, 40, 23]).

The noise generated by premixed turbulent flames has received attention from many researchers

(e.g. the early work from [10]). Most of the reported studies are based on the pioneering contri-

bution from [16] and one can refer to the recent work from [29] to get an in-depth overview on the

subject. The noise radiated by turbulent premixed flames is characterized by a power spectrum

having a smooth maximum with power law dependences on both sides. In this respect the peaks

corresponding to thermo-acoustically driven limit cycles are very narrow and as a first approxima-

tion, the stochastic forcing produced by the flames is assumed to act as an additive white noise

excitation. One can therefore model realistic nonlinear modal interactions by adding a stochastic

forcing into eqs. (14) and (15):

η̈a + ω2
n ηa = Ga(η̇a, ηa, η̇b, ηb) + ξa, (16)

η̈b + ω2
n ηb = Gb(η̇a, ηa, η̇b, ηb) + ξb. (17)

where ξa and ξb are two uncorrelated white noises of intensity Γ. The fact that these noise sources

are additive is demonstrated by [23]. The right hand sides are small compared to the left hand

sides – weakly damped/amplified oscillators – and respectively following [13] and [39], one can

This is a pre-print version. Published in Proceedings of the Royal Society A (2013) Volume 469, Issue 2151,

Article number 20120535, DOI: 10.1098/rspa.2012.0535



10

apply deterministic and stochastic averaging to eqs. (16) and (17) in order to get the equations

for the slowly varying amplitudes and phase:

Ȧ = νA−
3κ

32

(
3A2 + (2 + cos 2φ)B2

)
A+

Γ

4ω2
nA

+ ζa

Ḃ = νB −
3κ

32

(
3B2 + (2 + cos 2φ)A2

)
B +

Γ

4ω2
nB

+ ζb (18)

φ̇ =
3κ

32

(
A2 +B2

)
sin(2φ) +

(
1

A
+

1

B

)

ζφ

where ν = (β − α)/2 is the linear growth rate and ζa, ζb and ζφ are uncorrelated white noises of

intensity Γ/2ω2
n. One can also refer to the work from [36] and [32] for stochastic averaging in the

context of noise driven oscillators. Note that the equation for φ results from the difference of the

equations for ϕa and ϕb.

4. System identification

The next step consists in checking that the theoretical model fits to the observations. For that

purpose, the time limits of the first transition moments of the amplitudes process are calculated

from the experimental data. They are then used to perform a parametric system identification

based on the stochastic dynamic model proposed in the previous section. This strategy has been

for the first time proposed by [35] and recently improved to account for finite sampling rates effects

(see Lade 2009 and Honisch and Friedrich 2011). From the work of [11], it is known that these

limits are the drift coefficients of the Fokker-Planck equation associated to the coupled system

of Langevin equations (18). It is also known that the drift coefficients – or first Kramers-Moyal

coefficients – provide the deterministic contribution in the stochastic differential system. In order

to ease the subsequent analysis, the change of variables {A,B, ϕa, ϕb} → {A,B, Ǎ, B̌} is made

with Ǎ = (2+cos 2φ)1/2A and B̌ = (2+cos2φ)1/2B. The first two equations from the system (18)

become:

Ȧ =

FA(A,B̌)
︷ ︸︸ ︷

νaA−
3κa
32

(3A2 + B̌2)A+
Γa

4ω2
nA

+ζa (19)

Ḃ = νbB −
3κb
32

(3B2 + Ǎ2)B +
Γb

4ω2
nB

︸ ︷︷ ︸

FB(Ǎ,B)

+ζb (20)

Note that in the parameter identification process, the linear growth rates, nonlinear coefficients and

noise intensity in the amplitude equations can differ from each other in contrast with (18). This is

because as shown by [24] for the deterministic case, if there are some azimuthal non uniformities

in the thermoacoustic coupling strength, the degenerate eigenvalue will split and the assumption
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Figure 4: Left and right diagrams respectively correspond to the first and second azimuthal eigenmodes. Drift
coefficients corresponding to the deterministic components of the stochastic differential equations governing the
modal dynamics. The theoretical best fits are superimposed to the first transition moments time limits calculated
from measured data.

νa = νb = ν will not hold. It is also assumed that the nonlinear coefficients κa and κb and noise

intensity Γa and Γb might slightly differ from each others. The first Kramers-Moyal coefficients

are defined by

lim
τ→0

1

τ

∫∫ +∞

−∞

(a−A)P
(
{a, b̌}t+τ |{A, B̌}t

)
da db̌ = FA(A, B̌), (21)

lim
τ→0

1

τ

∫∫ +∞

−∞

(b−B)P
(
{ǎ, b}t+τ |{Ǎ, B}t

)
dǎ db = FB(Ǎ, B), (22)

where the conditional probability density P
(
{a, b̌}t+τ |{A, B̌}t

)
describes the probability that the

amplitudes takes values a and b̌ at time t + τ under the condition that they have been at A and

B̌ at time t. The coefficients were calculated from the experimental data presented in fig. 2(c)

and 2(f) corresponding to the two off-design operating conditions for which the thermoacoustic

coupling respectively operates on the first and second azimuthal modes. Note that only a fraction

of the data set is presented in these diagrams. The calculated drift coefficients are presented in
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Figure 5: Diagrams (a) and (b) respectively correspond to the first and second azimuthal eigenmodes. Potential U
computed from the extracted values of the modal amplitudes A and B and phase difference φ during short intervals
(100 periods).

fig. 4 together with the best fit from the theoretical model given in eqs. (19) and (20). The fact

that one can find parameters νa, νb, κa, κb, Γa and Γb for which the theoretical model matches so

well with the measured data is not a proof but a clear indication that the model captures the main

features of the actual modal dynamics.

5. Simplified model

To get a better picture of the complex interactions between modal amplitudes and phases, one

can concentrate on the phase difference dynamics defined by the third equation of the stochastic

differential system (18). This Adler equation with stochastic forcing describes the mutual synchro-

nization of the two eigenmodes cos(nθ) and sin(nθ). It can be written in the form

φ̇ = −
∂U

∂φ
+

(
1

A
+

1

B

)

ζφ, (23)

with U(A,B, φ) =
3κ

64

(
A2 +B2

)
cos(2φ), (24)

where U is the potential governing the phase difference dynamics. Readers interested by synchro-

nization phenomena can refer to the outstanding contribution from [1]. For given values of A and

B, the corresponding minima are at φ = ±π/2 (mod 2π). Based on the extracted values of A, B

and φ presented in fig. 2(c) and 2(f), the time resolved potential U has been calculated for a short

interval. Results are presented in fig. 5. One can see that φ takes all values over the range [−π, π]

(mod 2π) but it stays longer in the potential wells. Indeed, the phase difference locks for some
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Figure 6: Left and right diagrams respectively correspond to the first and second azimuthal eigenmodes. Diagrams
(a) and (c): Bivariate density functions of the modal amplitudes A and B calculated from the simplified potential
version of the coupled system given by eq. (27). The color scale for (a) and (c) is the same as the one used in
subfigures 2(a) and 2(c). Diagrams (b) and (d): Corresponding potentials given by eq. (26).

time on a value close to ±π/2 (mod 2π) before being kicked out and falling in another well due to

the amplitude dependent stochastic forcing. This synchronization phenomenon is explained by the

fact that in spite of the intense forcing, the system tends to stay close to the stable deterministic

limit cycle solutions.

It is also interesting to focus on the dynamics of the modal amplitudes A and B. Given that the

phase difference often takes values close to ±π/2 (mod 2π) and that the best fit parameters from

the previous section are such that κa ≈ κb and Γa ≈ Γb, one can consider a simpler version of

the stochastic differential eqs. (19) and (20) for which the dynamics of amplitudes A and B is
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governed by a potential V (A,B):

Ȧ ≃ −
∂V

∂A
+ ζa,

Ḃ ≃ −
∂V

∂B
+ ζb, (25)

with

V (A,B) = −
νa
2
A2 −

νb
2
B2 +

9κ

128

(
A4 +B4

)
+

3κ

64
A2B2 −

Γ

4ω2
n

ln(AB). (26)

For such system, the stationary probability density function solution of the associated Fokker-

Planck equation is given by

P (A,B) =
1

N
exp

(

−
4ω2

n

Γ
V (A,B)

)

, (27)

whereN is a normalization constant. Making use of the values obtained for νa, νb, κ and Γ from the

system identification process presented in the previous section, the potentials and corresponding

density functions were computed according to eqs. (26) and (27). The results are presented in fig.

6. One can observe a fairly good agreement between the bivariate density functions from subfigures

3(a) and 3(c) and the ones in subfigures 6(a) and 6(c) given by the simplified theoretical model

which does not take into account the phase dynamics and which is fed with the best fit parameters

from the previous section. This is again a clear indication that the stochastic differential system

(18) allows to properly model the dynamics of azimuthal eigenmodes in real gas turbine annular

combustors.

One can also note that for νa = νb, the deterministic part of the model has been already analyzed by

[17] from a theoretical point of view. Indeed when νa = νb and Γa = Γb = 0 the simplified version

(25) of the coupled system (18) belongs to region II in figures 14 and 15 of the aforementioned study.

[17] focused on the bifurcations encountered with dynamical system exhibiting O(2) symmetry

which are particularly relevant in fluid dynamics where the symmetry often plays a crucial role,

yielding standing or travelling waves (e.g. [26]). Another example of study dealing with this set

of coupled amplitude equations is the one from [3], tackling with the nonlinear interaction of non-

resonant modes in pulsating stars (see also [4]). [5] also investigated the influence of stochastic

forcing on the modal dynamics of these stars.

In the present work, it is shown that the stochastic forcing produced by the turbulent combustion

noise induces intermittent transitions between standing and spinning acoustic modes. As noticed

by one of the reviewers of this work, this phenomenon resembles to the reversals of the geomagnetic

poles which may be explained in terms of symmetry-breaking bifurcations submitted to turbulent

fluctuations as shown by [27]. One can also refer to [22], [30] and [2].

6. Discussion

The thermoacoustic coupling in annular combustion chambers commonly encountered in gas tur-

bine applications has been investigated throughout this paper. The aim was to address a question
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Figure 7: Examples of bivariate density functions of the modal amplitudes A and B calculated from eq. (27)
for different noise intensities Γ and azimuthal non-uniformity levels C2n and for fixed linear growth rate ν and
nonlinearity coefficient κ (see [24] for the definition of C2n; νa = ν(1 + C2n) and νb = ν(1 − C2n)) . Bottom
row: Γ → 0, deterministic approach can be used. When C2n = 0, i.e. uniform azimuthal distribution of the
nonlinear thermo-acoustic coupling, a purely spinning mode establish in the annular chamber. When C2n 6= 0, i.e.
non-uniform azimuthal distribution, the mode exhibits either a combined spinning/standing dynamics or a purely
standing oscillation. Middle and top rows: the noise level cannot be neglected, deterministic prediction are not
anymore valid and stochastic analysis is needed.
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raised in several recent publications: Do the azimuthal modes rotate or stand in the annular

combustor of a gas turbine? Three points clarifying that question can be retained from this study:

1. From the time-resolved acoustic field reconstructed from measurements on a heavy-duty

gas turbine combustor, it has been observed that limit cycles intermittently switch between

spinning and standing modes. Bivariate probability density plots reveal wide distributions

of modal amplitudes and phases with clearly defined maxima.

2. The standing and spinning modes have been previously predicted using a deterministic anal-

ysis. However the deterministic approach cannot predict the switching behavior between

spinning and standing oscillations. This is because in industrial applications, the background

noise produced by the highly turbulent reactive flow is very intense, stochastically perturbs

the limit cycles and cannot be neglected when one intend to describe modal dynamics.

3. The system of three coupled stochastic differential equations describing modal amplitudes

and phases is able to capture the properties of the dynamic pressure field which results from

combined nonlinear thermoacoustic coupling and random perturbations by the non-coherent

combustion noise.

One can also add that in order to meet component lifetime requirements in real gas turbine appli-

cations, the combustion is adjusted in such a manner that high amplitude pulsations are avoided.

As a consequence a practical gas turbine does not operate far away from the Hopf bifurcation point.

Hence the stochastic forcing of the limit cycles cannot be neglected. In turn, the modal dynamics

results from the balance between the robustness of the limit cycle established in the chamber and

the non-negligible stochastic forcing strength. Standing oscillations sporadically alternate with

spinning ones with preferred locking positions defined by the azimuthal non-uniformities of the

thermoacoustic strength. One can refer to figure 7 to get an overview of the various situations

which can be encountered when considering thermoacoustic coupling in annular combustion cham-

bers. Note that these probability density functions were calculated from the simplified version (25)

of the coupled system (18) which does not include phase dynamics.
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