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Abstract

Practical combustion systems are prone to thermoacoustic instabilities, which affect the mechanical

integrity of the components. This paper investigates how the turbulence-induced-noise stochasti-

cally drives these thermoacoustic limit-cycles. A model of the constructive feedback between the

flames and the combustor acoustics is proposed and includes a non-coherent forcing with finite

correlation time. It constitutes a more accurate description of the non-linear stochastic dynamics

observed in practical combustors, compared to the usual white-noise-forcing assumption. The out-

come of this study consolidates the recent model-based output-only system identification methods,

proposed by Noiray and Schuermans [1] to extract the governing parameters of the thermoacoustic

dynamics.

Keywords: Combustion noise, colored noise, Van der Pol oscillator, system identification, time

series analysis

1. Introduction

In the gas turbines research field, thermoacoustic instabilities in combustion chambers constitute

one of the most difficult problem to address. The race for more efficient, less pollutant and more

fuel and operational flexible systems is ongoing, towed by customers needs and environmental

regulations [2]. The mechanisms ruling the physics of these instabilities are complex and their

occurrence at a given engine operating point is difficult to predict.

In this context, the development of reliable combustion dynamics models is of primary impor-

tance. Considering that full scale turbulent-reactive-compressible Large-Eddy-Simulations require

prohibitive numerical costs, the predictive tools under development are based on low-order net-

work model for the treatment of the acoustics, complemented by experimentally measured data

and computationally-cheaper numerical simulations [4, 5, 6, 7].

In parallel to this predictive-tools development effort, robust model-based system identification

(SI) methods must be established in order to validate the aforementioned thermoacoustic network

models. Indeed, these output-only SI strategies can be applied to real data in order to extract linear
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Figure 1: Example of turbulence induced heat release fluctuation Q̂n (red, Sqq) and combustion noise (blue, Spp)
power spectra of an open flame radiating sound in the free field (adapted from reference [3]). The black line
corresponds to an Ornstein-Uhlenbeck process, approximating Sqq . In the inset, the same Ornstein-Uhlenbeck noise
with linear scales.
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Figure 2: Example of normalized combustion noise spec-
tra measured for different open flames configurations
(adapted from reference [3]). In the inset, the frequency
of the spectrum maximum is given as a function of the
flow characteristics for a large set of operating condi-
tions.
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Figure 3: Typical acoustic pressure spectrum in a com-
bustion chamber.
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growth rates hidden behind the nonlinear stochastic dynamics, and subsequently, to compare them

with the ones predicted using thermoacoustic network models. System parameter identification is

also of primary importance for the design of passive damping systems.

For the combustor physics description, one has to to simplify as much as possible the model while

making sure that the governing mechanisms are included. Indeed, the more the number of param-

eters to identify is, the less the identification will be robust.

In practical systems, thermoacoustic limit cycles are driven by a stochastic forcing resulting from

the intense turbulence in the combustor. Despite the fact that this forcing has a finite correlation

time, it is often assumed that this noise is white. In this paper, the reliability of this assumption is

investigated by comparing the dynamics and the statistics of white and colored noise driven self-

sustained oscillators. The objective is to check whether the actual stochastic non-linear dynamics

can be captured or not using a white noise forcing assumption. The potential consequences of that

noise color on output only system identification methods are discussed, to understand if that can

bias the results in practical cases, if not taken into account.

The thermoacoustic instabilities in turbulent combustion chambers can be modelled as a set of

coupled stochastic differential equations, each describing the dynamics of one of the many ther-

moacoustic eigenmodes established in the combustor (e.g. [8]). The acoustic pressure at a given

location can be approximated by the sum of their contribution: p(x, t) =
∑∞

i=1 ηi(t)ψi(x), where ηi

denotes the amplitude of the ith mode and ψi the spatial distribution of the corresponding natural

acoustic mode of the chamber. It is possible to express the modal amplitude dynamics as a set of

nonlinearly coupled stochastic oscillators (see [9]):

η̈i(t) + ω2
i ηi(t) = fi(ηk, η̇k, ...) + ξi(t) i, k = 1, ..,m, (1)

where ωi = 2πfi is the pulsation of the ith natural acoustic mode and f is the non-linear function

combining the effect of heat release fluctuation q and the chamber acoustic damping.

In eq. (1), ξi(t) is the aforementioned additive stochastic forcing, resulting from the weighting by

ψi of turbulence-induced non-coherent heat release rate fluctuation, having spectrum Q̂n(ω). An

example of the correspondent power spectral density Sqq = |Q̂n(ω)|2 is plotted in fig. 1.

Considering ξ as a delta correlated forcing simplifies the modeling approach and has been used in

most of the studies dealing with stochastically forced thermoacoustic limit cycles.

However, the actual power spectrum Sqq of the source therm Q̂n is not constant, but it presents a

characteristic low-pass filter behavior [3] (fig. 1, in red). The “color” of this noise forcing is due to

a non-vanishing, although small, correlation time.

In case of an open turbulent flame placed in an unbounded environment, the radiated sound con-

stitutes the so-called combustion noise [10]. Figure 1 shows the power spectra of both the source

term Q̂n (Sqq) and of the combustion noise radiated from an open turbulent flame (Spp). One

has to notice the bandpass characteristic of combustion noise spectrum, featuring a maximum in

f = fmax, in contrast with the low-pass one of Q̂n, having fmax as cut-off frequency. Q̂n is there-
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fore a compact monopolar source, generating an acoustic pressure having a power law P ∝ f2 for

f < fmax. It is shown in the examples taken from [3] that the normalized combustion noise power

spectra collapse on top of each others, indicating a general scaling law not depending on the flame

characteristics (fig. 2).

In case of an enclosed thermoacoustic system, the situation is different. As an example, a typical

acoustic pressure spectrum recorded in a combustion chamber, which is operated at a condition

characterised by a strong thermoacoustic limit cycle, is presented in fig 3. As is often the case, a

single mode dominates the spectrum, with a sharp peak of frequency f0.

If one wants to perform non-linear system identification using a single mode description [1], one

has to remove the effect of neighbouring thermoacoustic modes from the raw time traces. This can

be done by bandpass filtering the data or by performing a modal projection if several simultaneous

records at different location in the chamber are available. These data manipulations can, however,

change the outcomes of output-only system identification methods, as the examined signal and its

statistics can be sensibly altered. Therefore, the choice of the processing parameters, such as the

filter bandwidth in case of filtering, has to be taken with care.

In the band around the considered mode natural frequency, Sqq is expected not to change signif-

icantly. Therefore, in this case, the use of a white noise approximation seems legitimate. This

paper aims at bringing new insights in the effect of noise color on the system dynamics, and at

addressing the question of the necessity to adopt or not this more refined model.

The outline of the present study is the following. In section 2, the theoretical background is covered,

and an analytical model for colored noise is derived. In section 3, the white noise approximation is

compared to the colored noise modelling of non-coherent heat release fluctuation, closer to reality.

The aim is to investigate if, and under which circumstances, one can observe a substantial differ-

ence between the two models. Then, the effect of experimental data filtering, in the context of

system identification, is addressed, in order to appreciate the errors that this practice could lead,

if not properly performed.

2. Model of the system

The theoretical model of a colored noise driven self-sustained oscillator is presented in this section.

This is supposed to mimic, in a simplified way, the main aspects of the real system dynamics.

One of these, to fulfil the main purpose of this work, is the effect of turbulence-induced noise

color. In section 2.1 the difference between noise radiated by open turbulent flames and the one

recorded inside a combustion chamber is discussed. Then a model of colored noise is introduced in

section 2.2. In section 2.3, the Van der Pol oscillator driven by white or colored noise is presented,

and the probability density function for its oscillation amplitude is then derived.
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Figure 4: Network models for thermoacoustic systems. The open loop configuration (a) represents the case of open
flames radiating noise in the free field. When the flame is bounded, a feedback system is generated (b). Here the

acoustic block is fed by the total heat release fluctuation Q̂ = Q̂a + Q̂n, and generates pressure fluctuations. These
coherent perturbations act on the flame, that responds with Q̂a. The flame is also excited by incoherent forcing,
due to the turbulence in the flow, that produces Q̂n. The closed system can be seen as well as a SISO one (grey
shading): the external forcing is given by the incoherent component only, while the coherent response is a feedback
that modifies the poles of the system (see also fig. 6c).

2.1. Theoretical background

The pressure fluctuation in the acoustic domain can be estimated making use of the Helmholtz

equation and appropriate boundary conditions:

∇2p̂(s, x) −
(s
c

)2

p̂(s, x) = −sγ − 1

c2
Q̂(s, x) in the domain, (2)

p̂(s, x)

û(s, x) · n = Z(s, x) on boundaries, (3)

where p̂ and û are the acoustic pressure and velocity fluctuations, s the Laplace variable, x the

position, c the local speed of sound, γ the specific heat ratio, Q̂ the heat release fluctuation, n the

outward normal to the boundary and Z the acoustic impedance. This equation stands if the Mach

number is low.

Therefore, heat release fluctuations Q̂ from the flame constitute a source term for the acoustic

pressure fluctuations p̂. If the flame is placed in an open environment, waves generated by the

reaction zone are radiated away without reflections. An example of the spectral content of such

sound field, i.e. the combustion noise [10], is given in fig. 2. Q̂, in this case, consists only in the

turbulence induced noise-like fluctuation Q̂n (see fig. 4a). In [11], a model for this mechanism is

provided, linking turbulence to heat release fluctuation and then to sound radiation.

When the flame is placed within a container, e.g. into a combustion chamber, the acoustic field

changes completely. In fact, as a consequence of the reflections at the boundaries, a series of natu-

ral acoustic modes is established in the domain. Any kind of source acting in the chamber excites
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Figure 5: Comparison between white noise (grey) and colored noise (red) power spectra, normalised by the white
noise intensity, for different iso-power bandwidths ∆ω. The power provided by the two types of noise is equal in the
considered band (same area under the curve: note the linear scale). Note that Sξξ(ω0) 6= Γ/2π. The same bands
are afterwards used in fig. 9.

these modes in a way that depends on its distribution with respect to the modes shape. As result,

for example, any mode having a node close to the source location is not excited. Therefore, the

resulting acoustic field, is a superimposition of each mode response to the sources forcing. If the

source consists, as in this case, in a flame, another peculiar aspect has to be considered. In fact,

the induced heat release fluctuation Q̂ depends in this case on the local acoustic field. Therefore,

the source depends on the sound field it generates, or equivalently, a feedback loop is created (see

fig. 4b). This last fact can cause the instability of the thermoacoustic system, if heat release and

pressure fluctuations interact constructively as exemplified by the dominant peak in (fig. 3).

However the flame, is also influenced by local hydrodynamic turbulent flow. The resulting heat

release fluctuation is the aforementioned Q̂n. The turbulence-induced flow perturbations exhibits

a much smaller spatial correlation than the acoustic ones, which are correlated over the entire

combustor. This does not prevent it to be weighted as well on the modes shape: as discussed in

the introduction and highlighted in eq. (1), what enters the mode amplitude equation is ξ(t), which

is the time-domain counterpart of Q̂n(ω), after a weighting on the mode spatial distribution ψ(x).

The presence of this random forcing represents an opportunity for the development of system iden-

tification methods. It “shakes” the system dynamics away from its deterministic trajectories, thus

enriching the statistics of the output signals, allowing the system to visit states that it would never

access if noise were not present.

2.2. Colored noise model

In a bounded system it is possible to extract, using methods such as the ones described in [12],

the acoustic pressure generated by the heat release fluctuation source. It is however impossible
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to measure the sources Q̂n and Q̂a and their respective emitted sounds independently. Tests like

those presented in fig. 1 and fig. 2 are performed removing the combustor’s walls and placing the

open flame in an anechoic room, so that one can measure the field generated by the incoherent heat

release fluctuation only, i.e. the combustion noise. Therefore, if a model for that stochastic forcing

is needed, combustion noise measurements are the only source of information. As seen before,

combustion noise features a specific spectrum. Typically, this has rising power from low frequencies

to a maximum, following approximatively P ∝ f2, and then slowly decaying with an approximately

constant law for higher frequency: P ∝ f−r, 2 < r < 3.4 - see for instance [3]. The peak frequency

of the combustion noise spectrum can be estimated making use of experimental relations such as the

one proposed in [13], involving dimensions, flow properties and chemical quantities. Alternatively,

it has been observed [3] that, defining the Strouhal number as St = fmaxLF/Uavg, where LF is the

flame length, this dimensionless group is almost in any case close to 1, hence fmax ≈ Uavg/LF. This

evidence is presented in the inset of fig. 2. The heat release fluctuation constituting the incoherent

source term (Q̂n in this work) have a low-pass characteristic, i.e. its spectrum is constant up to

the cut-off frequency, and then it decays with the same power law of the combustion noise. The

power spectrum Sqq of Q̂n can be approximated with different analytical expressions, to obtain

a model for the source term to be used in the remainder of this work. According to a mode-

decomposition vision, more suitable in the context of bounded systems, Q̂n is projected on the

mode shape ψ(x), obtaining after an inverse Fourier transform ξ(t) (see eq. (1)). The essential

feature of this stochastic forcing is its non-zero correlation or, equivalently, this is a colored noise.

This fact, taking as reference a white noise, results into an additional parameter needed to describe

it, i.e. its correlation time.

In literature one can find a wide collection of studies featuring colored noise, in topics ranging

from electrical engineering to mathematics, from biology to mechanics. Some references for colored

noise driven oscillators are [14] or [15]. [16] shows the effect of three different noises (white, blue

and pink) on thermoacoustic dynamics in a context of limit-cycle triggering. In [17] a complete

discussion about any 1/f r noise generation for simulation purposes is addressed. In some works,

such as [18], the Lorentzian, or “quasi monochromatic” noise is adopted. In most of the cases

where the noise has low-pass characteristic, ξ is provided as the result of an Ornstein-Uhlenbeck

process. In fact, this has a low-pass frequency spectrum, with a power decay P ∝ f−2 beyond

the cut-off frequency, and an exponentially decaying autocorrelation. This model is an adequate

representation of actual experimental data, as shown in fig. 1 (black line), where it matches the

Q̂n power spectrum spectrum Sqq.

From a mathematical point of view, ξ is the result of the differential equation:

ξ̇(t) = − 1

τc
ξ(t) +

√
γ

τc
ζ(t), (4)

where ζ is a unit-variance Gaussian white noise of intensity Γ, γ is a constant coefficient used later

to adjust the power of the noise and τc is the noise characteristic time constant. Equivalently, ξ
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can be obtained applying to ζ the filter H :

H(s) =
ξ̂(s)

ζ̂(s)
=

√
γ

1 + τcs
. (5)

The resulting power spectrum of ξ(t) is then given by |H |2Sζζ :

Sξξ(ω) =
Γ

2π

γ

1 + ω2τ2c
, (6)

As discussed in the Introduction, if one wants to perform SI with a single mode description, then

one has to focus the analysis in a band [ω1;ω2] around one of the system’s natural pulsations ω0.

The value of γ can be chosen to equate the powers provided by ξ and by a white noise of intensity

Γ in that band (
∫ ω2

ω1

Sξξdω =
∫ ω2

ω1

Γ/2πdω), obtaining:

γ =
τc(ω2 − ω1)

arctan(ω2τc)− arctan(ω1τc)
. (7)

τc is a direct measure of how “colored” the noise is: the shorter τc, the closer ξ is to a white noise.

In agreement with that, in the limit τc → 0, one gets γ → 1 and Sξξ(ω) → Γ/2π = Sζζ(ω).

The band [ω1;ω2], which is henceforth referred as “iso-power band”, can be expressed via the

parameter ∆ω:

[ω1;ω2] = [ω0 −∆ω;ω0 +∆ω]. (8)

∆ω (henceforth “iso-power semi-bandwidth”) can vary between 0 (band degenerating in the single

pulsation ω0 = 2πf0) and ω0 (band [0; 2ω0]). ∆ω will play a fundamental role in the remainder of

this work. One can see in fig. 5 how this parameter affects the noise power spectrum. Note that

Sξξ(ω0) 6= Γ/2π.

The characteristic time τc is the noise correlation time, as obtained via the autocorrelation function

of ξ (inverse Fourier transform of its power spectrum),

k(t) = Γ
γ

2τc
e−

t

τc , τc =
1

k(0)

∫ ∞

0

|k(t)|dt. (9)

2.3. Colored noise driven Van der Pol oscillator

In order to estimate the effects of noise color on the dynamics of a thermoacoustic system, a

simplified model consisting in two coupled van der pol oscillators is used. It contains a limited

number of parameters, but it still represents well the dynamics observed in combustion chambers.

A noise ξ is used to force the system, mimicking the non-coherent heat release fluctuations. ξ will

be modeled either like a white noise or like a colored noise, in order to compare the response of the

model, under different characteristic parameters. In fig. 6, MATLAB R© and Simulink R© simulation

results for a system of two coupled VdP oscillators driven by colored noise are presented. The total

pressure power spectrum is similar to the experimental one (compare with fig. 3), and clarifies what

is hidden behind a single-mode approximation. The total output p is the sum of the outputs of
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Figure 6: Double Van der Pol oscillator simulation results. The model is made of two VdP oscillators linearly
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the two oscillators p1 and p2. Note the difference (thin and thick dark blue lines) between the

simulated and the theoretical spectrum of p2. The main difference between the two is for f = f1.

This is because these oscillators are coupled and the linearly unstable oscillator #1, characterized

by a limit-cycle at f1, is forcing oscillator #2. At the same time, the linearly stable mode (oscillator

#2) contributes to Spp around the eigenfrequency f1 = 150 Hz of the unstable mode (oscillator

#1). Its effect is present directly at each frequency in the output of the system, as p = p1+p2, and

indirectly as it is part of the feedback action that forces both VdP oscillators. Therefore, it is not

exact to state that the response of the system at f = f1 is just due to the oscillator #1. However,

if the two peaks are distant enough and one is stronger than the other, these contributions are

negligible, compared to the direct output of the oscillator #1 at its natural frequency. Restricting

the discussion to this case, one can adopt the aforementioned single-mode approximation.

If one single mode j dominates in the system, the pressure field can be then approximated by

p(x, t) = ηj(t)ψj(x), with ηj governed by:

η̈j + ω2
j ηj = fj(ηj , η̇j) + ξj . (10)

Assuming the damping of the system to be linear, one can write: fj(ηj , η̇j) = q̇a − αη̇j , where α

is the damping constant. qa(t) is the inverse transform of Q̂a(ω), and it therefore represents in

the time domain the heat release fluctuation coherent with the acoustic field. A common response

of turbulent flames to acoustic excitation features a linear increase of heat release fluctuation for

low forcing amplitude, followed by a saturation (see for example [19, 20]). For small and moderate

amplitudes, this last aspect can often be approximated via a cubic term, therefore one can assume

qa = βηj − κη3j /3 (see Appendix A for details). Considering that, one gets the Van der Pol (VdP)
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acoustic period of p, τA = 1/2|ν| pressure amplitude A characteristic time scale [22].

oscillator’s equation:

η̈j + ω2
j ηj = [2ν − κη2j ]η̇j + ξj (11)

where ν = (β − α)/2 is the linear growth rate.

It is convenient to recast this equation using the amplitude-phase coordinates. This substitution is

legitimate as, in most of the practical cases, the thermoacoustic systems are in the class of “weakly”

amplified/damped ones. This means that the right hand side of eq. (10) is much smaller than the

left one and then η(t) ≈ A(t) cos [ωt+ ϕ(t)] = A(t) cosφ(t). Following the derivation provided in

Appendix A and using the model (6) for ξ, deterministic and stochastic averaging [21] yields the

stochastic differential equation:

Ȧ = A
(
ν − κ

8
A2

)
+

Γ

4ω2
0A

γ

(1 + ω2
0τ

2
c )

+ µ, (12)

where µ is another noise source resulting from the stochastic averaging.

Again, in the limit of τc → 0, eq. (12) reduces to its counterpart for a white noise driven system:

Ȧ = A
(
ν − κ

8
A2

)
+

Γ

4ω2
0A

+ µ. (13)

The averaging method is valid if the correlation times are such that τξ ≪ τA [21]. This is

generally verified for practical cases. The amplitude correlation time is related to the growth rate

by τA ≃ 1/2|ν| [22]. Taking, for example, ν = 10 rad/s, τA = 50 ms, while the noise correlation

time τc ≈ 1/2πfmax is generally smaller than 1 ms (fmax ≥ 50 Hz, see fig. 2). These characteristic

times are presented in fig. 7. Considering the Fokker-Planck equation (see [23]) associated with

eq. (12) , one can derive the stationary probability distribution (PDF) for the amplitude of the

colored noise driven VdP oscillator:

Pc(A) = NcA exp

[
4ω2

0

Γ

(1 + ω2
0τ

2
c )

γ

(
νA2

2
− κA4

32

)]
, (14)
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and for the white noise driven VdP oscillator:

Pw(A) = NwA exp

[
4ω2

0

Γ

(
νA2

2
− κA4

32

)]
, (15)

where Nc and Nw are two normalisation constants defined by
∫∞

0
P (A)dA = 1.

For a given set of system parameters (ν, κ, ω0), Pw(A) depends only on the white noise intensity

Γ, whereas Pc(A) is also function of the colored noise time scale τc and of the iso-power semi-

bandwidth ∆ω (through γ, defined in eq. (7)). Apart for the normalisation constants, Pc and Pw

differs for the factor (1 + ω2
0τ

2
c )/γ in the exponent. In fig. 8 one can see a map of its value, as

function of the iso-power bandwidth ∆ω and of the source noise correlation time τc. This is a first

qualitative indication of the effect of the introduction of noise color in the model. For short τc and

narrow ∆ω, this coefficient is close to one (white), meaning that the two analytical expressions

for Pc and Pw are identical. For larger values of those two parameters, however, this coefficient

increases (darker colors in the map). Accordingly, Pc and Pw can show significant differences, as

depicted in fig. 9 and investigated in more detail in the next section.

3. Noise color in system identification methods

In this section, the white noise approximation is compared to the more realistic colored noise model,

using as a meter the difference between the respective analytical expressions for the amplitude PDFs

(eqs. (14) and (15)). The amplitude PDF is used with success for system identification purposes,

and the discussion of this section is oriented in that sense.
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3.1. Colored vs white noise

The difference between the PDF of colored noise driven system Pc and the one obtained adopting

the white noise approximation Pw is related to the reliability of all the methods that exploit the

experimental PDF for identifying the system parameters. Indeed, if the two were significantly

different, the white noise assumption would be brought into question.

Examples of the effect of noise power and correlation time influence on the PDF are given in

Figure 9. The system parameters are the same for both the white noise and the colored noise driven

oscillators. In the latter, the additional parameter of correlation time of the noise is included, with

different possible values. The colored noise intensity is chosen to have the same power as the white

noise, in a band around the oscillator natural pulsation [ω0(1 ± ∆ω)]. In the four panels, one

can see the analytical PDFs for two different values of the linear growth rate ν (columns) and two

different iso-power band (rows). In the case of a wide iso-power band, one can observe a substantial

difference for certain values of the correlation time. On the other hand, when the band is narrow,

Pc matches well Pw, whatever the correlation time of the noise.

The growth rate parameter ν determines, with its sign, whether the system is linearly stable or

not. If ν < 0, the oscillator deterministic equilibrium amplitude is A = 0, but the presence of the

noise results in a non-zero amplitude of maximum probability (Am > 0). If ν > 0, the amplitude

of the limit cycle due to nonlinear saturation is Adet =
√
8ν/κ. For any ν it can be observed

that, compared to a white noise of the same power, the colored noise let the system stay closer

to its deterministic amplitude. In fact, in the linearly stable case (left column), the amplitude of

maximum probability is moved towards lower values of A (closer to the rest position), and the PDF

becomes less spread. In the linearly unstable case (right), the amplitude of maximum probability

Am does not change, because is governed by ν itself and the saturation strength κ, but, again, a

narrowing of the PDF is observed. This aspect could be linked to the correlation of noise. In fact,

the white noise changes from instant to instant with no underlying trend. This gives no time to

the system to adapt the response to the external forcing, resulting in a stronger distancing from

the deterministic behaviour of the oscillator.

Note that in case of experimental data analysis the whole process is generally inverse. In fact,

one tries to fit a theoretical “white noise PDF” P fit
w on the experimental one (by nature “colored”,

P exp
c ), in order to identify the system parameters. When the effect of noise color is no more

negligible, the P fit
w that fits into P exp

c has incorrect parameters, as the Pw with the right ones

would be sensibly different. Therefore, if one knows the difference between the theoretical Pw and

Pc for any combination of parameters, then is possible to check if the white noise approximation

will yield a correct identification.

To obtain a quantitative measure of that difference, one can make use of the Hellinger distance:

H =
√
1−Bh, (16)

where Bh =
∫ +∞

−∞

√
p(x)q(x)dx is the Bhattacharyya coefficient. The Hellinger distance is a

statistic quantity that measures the closeness of two PDFs of the same random variable p(x) and
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q(x), and ranges from 0 (p(x) = q(x)) to 1 (p(x) and q(x) non-zero on different interval of x).

In this section, H is computed to compare Pc(A) and Pw(A) for different points (∆ω, τc, ν) of the

space of iso-power bandwidth, correlation time and growth rate. The results are presented as a

colormap in fig. 10. White regions correspond to values of H close to 0, i.e. where Pw is similar

to Pc, while dark regions correspond to combinations of parameters that leads to a substantial

difference between the two.

All the maps are similar, whatever the system’s linear growth rate. The overwhelming majority

of the area is light-colored, meaning that the white noise model matches the colored one for a

wide range of parameters values. The two PDFs start to be different and the area to be dark in

the upper-right corner of the map, i.e. for high values of ∆ω and τc. All the three investigated

parameters have an effect on the difference between Pc and Pw.

It can be observed that Pc and Pw are different for lower values of ∆ω and τc when ν < 0, meaning

that the noise color has a slightly stronger effect. This is due to the shift of the amplitude of

maximum probability Am, observed in the linearly stable case for non-negligible values of τc.

The influence of τc is intrinsically related to the noise color: as discussed in section 2.2, the shorter

τc, the closer is ξ to a white noise (which has τc = 0). That is why the region of match between

Pc and Pw (H ≈ 0, white in the map) is wider for short correlation times.

∆ω has also a strong influence: for large bandwidth Pc and Pw are different. This has an impact

on the choice of the filter bandwidth, if the experimental data need to be processed, and it is

actually the only parameter on which one can play, given that the other two depends on the

system properties. Given (τc, ν) and an accepted discrepancy between Pw and the more accurate

Pc, the Hellinger map provides an indication on the maximum filter size to adopt, in order not to

misinterpret the actual amplitude dynamics. It is however more likely to be able to guess a range

of possible noise correlation times, rather than its exact value. This is possible, e.g. making use

of empirical relations such as the one mentioned in section 2.2. The same can be argued for ν,

although it plays a minor role for this specific issue. This fact prevent to use the Hellinger map in

a systematic way, for computing the exact filter size to adopt. However, this result highlights the

importance of focusing the analysis of experimental data on a limited band around the frequency of

interest, when one attempt a single-mode SI using the amplitude PDF. In fact, even if the studied

mode were completely isolated from the others, the error brought by the noise modelling would be

significant, if one completely ignored its actual power spectrum and try to draw conclusions using

the unfiltered pressure time trace or, equivalently, the complete acoustic pressure spectrum.

Nevertheless, for low values of τc (reasonable in actual combustion chambers), the map shows

that the mismatch between Pw and Pc is not critical, as it is possible to adopt large iso-power

bandwidth, with a semi-width up to the order of 0.5f0. This allows one to state that the white

noise approximation is satisfactory in most of the situations.

Therefore, summing up, the effect of noise color in thermoacoustic system is more significant for:

• driving noises featuring longer correlation times τc,
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• wider iso-power bandwidth ∆ω,

However,

• in most of the practical cases, for realistic values of ν and τc, and not adopting an extremely

wide ∆ω, the white noise approximation is satisfactory.

In addition to that, actual spectra often feature sensible peaks around the main one. This, as

discussed in the next section 3.2, is a further constraint when one analyses experimental data and

performs SI.

3.2. Filter size for system identification

A typical combustor acoustic pressure spectrum features different peaks (fig. 3). As seen in the

simulated double VDP oscillator (fig. 6), the different modes acting in the domain are mutually

coupled, each one influencing the response of the others. However, if the neighbouring peaks of

the spectrum are not too close, one can analyse one mode at a time, isolating its dynamic from

that of the other modes. This can be easily done by bandpass filtering the data. This simplifies

the system identification, since neither the parameters of the neighbour mode, nor the coupling

coefficients have to be taken into account .

Figure 11 shows a typical situation and the effects of a different filter bandwidth. This experimental

spectrum features a strong peak, corresponding to the dominant mode’s eigenfrequency, surrounded

by two others small peaks. In order to identify the mode’s characteristic parameters with accuracy,

removing the other modes effect, one has to filter the signal around the peak. The maximum
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bandwidth is the one that discards neighbouring peaks while keeping the main peak and its tails

(∆f/f0 = 0.40 in this case). One could also choose narrower bands (∆f/f0 = 0.20 or ∆f/f0 = 0.05

in this case), obtaining different resulting time signals. However, in the last case, one can observe

a complete loss of the information contained in the original signal. Looking at the right panel of

fig. 11, one can see that in the first case (green), the dynamics on time scales comparable to the

amplitude correlation time τA = 1/2|ν| is preserved: compared to the widest filter (blue), only

high frequency oscillations are lost. This means that the PDF of A is essentially unaffected. In the

second case (red filter), the resulting signal follows the general trend of the pressure oscillations,

but the signal statistics are altered, and no reliable identification is possible.

Therefore, when one analyses experimental data around a frequency of interest, there exist, for the

filter bandwidth:

• an upper limit, given by the distance to the neighbouring peaks,

• a lower limit, given by the need to not alter the amplitude statistics.

This constraint has to be satisfied in parallel with the one regarding the validity of the white noise

approximation (section 3.1). However, in most of the practical cases, neighbouring peaks are close

and the filter bandwidth narrow enough that the effect of noise color can be safely neglected.

4. Conclusion

In this work, the effects on thermoacoustic systems of the color of turbulence induced noise has

been investigated. The white noise approximation, often adopted in the context of data analysis

and system identification, has been critically compared to the Ornstein-Uhlenbeck noise model,

closer to experimental data. If the correlation time of the noise τc is not negligible, or the response

of the system is examined in wide bands, one can observe significant differences between the two

models for the same system’s parameters. This results in a sensibly different amplitude probability

density function, causing the system identification methods to loose accuracy if a white noise model

is used for the identification of the actual system. In that case, one would have to perform the

system identification using the colored noise driven Van der Pol oscillator with 2 more paramteres

to identify. The accuracy of the white noise approximation for any combination of examined band-

width, correlation time and growth rate can be estimated making use of some indicators, such

as the Hellinger distance. While τc is an unknown parameter of the particular thermoacoustic

system, the analysed band is generally chosen during the post-processing of experimental data,

therefore care must be taken in that choice. However, it is rather more common in practical cases

to filter the experimental pressure signal around an eigenfrequency of interest, to get rid of the

neighbouring dynamics and perform a more reliable system identification of the parameters relative

to that mode only. As a result, the filter window size is already constrained by the proximity of

neighbouring peaks, and one does not have to concern about the color of the real driving noise.

Hence, the white noise approximation is satisfactory for most of the practical cases and convenient,
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as one parameter less (τc) is needed to describe the system. On top of that, a lower bound for the

filter window has also to be considered in order not to loose the signal statistics and dynamics and

achieve an accurate identification.

Combining all the constraints, there exists a range of possible filter bandwidth to apply to experi-

mental data, that has to be:

• not too wide, in order to avoid the influence of the color of noise or, more frequently, the

effect of neighbouring peaks,

• not too narrow, in order to not remove the useful information contained in the signal.
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Appendices
A. Derivation of the amplitude equation

In this appendix, the amplitude equation for a cubic Van der Pol oscillator is derived. This

is in the class of non-conservative, non-linear oscillators. It obeys the second order differential

equation η̈ = f0(η, η̇, t). When f0 is such that the oscillator is quasi-harmonic (resonable for a

thermoacoustic system model), one can write the solution of that problem as:

η(t) ≈ A(t) cos [ω0t+ ϕ(t)] = A(t) cosφ(t), (17)

where A(t) is a term that modulates the amplitude of the quasi-sinusoidal oscillations, and ϕ(t)

their phase. These two quantities, although they may assume conspicuous values, are supposed to

vary slowly or, equivalently, they are approximatively constant over an acoustic period T0 = 2π/ω0.

Therefore one can neglect their time derivative over that time scale and write:

A =
√
η2 + (η̇/ω0)2, (18a)

ϕ = − arctan

(
η̇

ηω0

)
− ω0t. (18b)

Deriving in time the latter two, and considering again eq. (10), one gets:

Ȧ = − sinφ

ω0

f(A cosφ,−Aω0 sinφ)−
sinφ

ω0

ξ, (19a)

ϕ̇ = −cosφ

Aω0

f(A cosφ,−Aω0 sinφ)−
cosφ

Aω0

ξ. (19b)
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The function f can be expanded in Taylor series:

f(η, η̇) =
∑

m

∑

n

cm,nη
mη̇n. (20)

Then one can apply to the first right hand term of (19a) a deterministic averaging over one acoustic

period and keep terms up to O(A3), obtaining:

Ȧdet =
1

2
c0,1A+

(
1

8
c2,1 +

3ω2
0

8
c0,3

)
A3. (21)

The remaining term is stochastically averaged following the procedure proposed in [21]. The

stochastic part of (19a) is recast making use of the rectangular coordinates x = −ξ(t) sinφ(t) and
y = ξ(t) cosφ(t). As the correlation time of the noise is assumed to be much shorter then the

characteristic time of A, one can find a time shift ∆ ≫ τc, over which A and ϕ still do not change

appreciably. One can then expand x in ϕ, around ϕ(t−∆) = ϕ−∆:

x ≈ −ξ(t) sin(ω0t+ ϕ−∆)− ξ(t) cos(ω0t+ ϕ−∆)∆ϕ. (22)

Unlike ϕ(t), ϕ−∆ is stochastically independent from ξ(t), so one can average the two separately:

〈x〉 = − cos(ω0t+ ϕ−∆)〈ξ∆ϕ〉. (23)

One can then integrate the fluctuating term of eq. (19b), obtain ∆ϕ, and then express 〈x〉 as:

〈x〉 = − 1

ω0A

∫ ∆

0

〈ξξτ 〉 cosφ cos(φ − ω0τ)dτ. (24)

For an Ornstein-Uhlenbeck noise, 〈ξξτ 〉 = Γ
γ

2τc
e−τ/τc. This autocorrelation function goes quickly

to zero for time larger than τc. Therefore, one can extend to infinity the upper limit of the integral

in (24) and, keeping the non-oscillatory part only, get:

〈x〉/ω0 = Ȧstoch =
Γ

4ω2
0A

γ

(1 + ω2
0τ

2
c )
. (25)

This term exists due to the correlation between A(t) and ϕ(t), which causes the fluctuating com-

ponent to have a non-zero average.

One has then to consider x′ = x− 〈x〉, a zero mean process constituted by all that is left from the

stochastic averaging. Comparing with (22) and (23), one can approximate x′ ≈ −ξ(t) sin(ω0t +

ϕ−∆). Therefore, 〈x′x′τ 〉 ≈ 1
2
〈ξξτ 〉 cos(ω0t), so µ is, again, a colored noise.

In order to proceed, one has to provide an expression for f(A cosφ,−Aωj sinφ). A common re-

sponse of turbulent flames to acoustic excitation features a linear increase of heat release fluctuation

for low forcing amplitude, followed by a saturation [19, 20]. For small and moderate amplitudes,

this last aspect can be approximated via a cubic term:

qa = βη − κ

3
η3, (26)
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where β and κ account for linear growth and nonlinear saturation. This yields:

f(η, η̇) = η̇(β − α− κη2). (27)

Comparing this to (20), substituting accordingly the constants cm,n in (21) and recollecting all

the previous terms, one obtains eq. (12) and, in the limit τc → 0, (13).
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