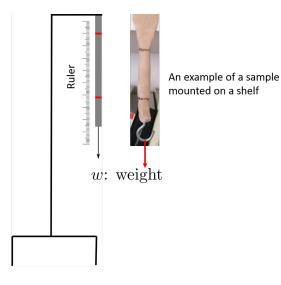
# Non-linear rheological properties of dough

# Objective

Measurement of the rheological properties of household dough.

### Introduction

Household dough is an example of a material that exhibits a non-linear stress-strain response. In addition, this response is also a function of loading rate. In this exercise, we will perform simple uniaxial extension experiments on household dough (of your choice) to study this nonlinear behavior.


### Materials

For this experiment you will need the following,

- 1. Any flour of your choice and water
- 2. Oil (any oil would work) to lubricate the surfaces of the sample
- 3. A ruler or a camera for length and diameter measurements
- 4. Weights to apply dead load to the sample

## Experimental setup

A suggestive schematic of the experimental setup is shown below.



Schematic of a test setup

# Procedure

We will split our experimental procedure into three parts

## I. Sample preparation

- 1. Prepare the dough samples by simply mixing flour and water (record the relative ratio of flour to water). Note: Too much water may make the material too viscous. A ratio close to 9:1 (four to water) may be ideal. However, feel free to try out different ratios.
- 2. Prepare cylindrical samples of similar dimensions (at least three samples for a given composition). Suggested dimensions are length, L  $\simeq$  50-75 mm and diameter D  $\simeq$  5-10 mm.
- 3. Label your samples (using a convenient naming system) and measure the dimensions of your samples before testing.

#### II. Measurement of the non-linear stress-strain response

- 1. Place markers on the first sample to measure the displacement during the experiment. You may use two lines running parallel to the cross-section of the sample at a specific distance along the tensile axis of the sample or draw a grid (if you feel particularly adventurous and are using a camera!)
- 2. Coat the sample using oil to ensure that the moisture does not leave the surface of the sample.
- 3. Using the experimental setup described in the Experimental setup section, mount this sample to the top clamp and attach the weights to the end of the sample.
- 4. Collect data (in the form of images or readings from the markers and ruler) at periodic time intervals (choose your time intervals according to the rate of loading).
- 5. From the data collected you should be able to calculate both the extension of the sample and change in cross-sectional area.
- 6. Repeat the experiment for at least three samples.

#### II. Changing specimen dimensions

- 1. The objective of this set of experiments is to change the loading rate without a displacement/ velocity control mechanism.
- 2. Prepare samples with same lengths as before but two different diameters, one that is double the original diameter and another that is half.
- 3. For the same composition, repeat the above experiment for the new specimen dimensions (atleast three experiments per specimen type)

#### Data analysis and presentation

The following relations allow us to characterize the stress-strain-strain rate response of the material.

- 1. The sample dimensions in the undeformed configuration are denoted using,  $L_o$ : length,  $D_o$ : diameter, and  $A_o$ : area of cross-section
- 2. At every time step where data is collected, the instantaneous dimensions are denoted using, L(t): length, D(t): diameter, and A(t): area of cross-section
- 3. The instantaneous deformation rate of the sample at a time step  $t_n$  is calculated as,

$$v(t) = \frac{\Delta L}{\Delta t} = \frac{L(t_n) - L(t_{n-1})}{t_n - t_{n-1}}$$
(1)

4. Longitudinal stress

$$\sigma(t) = \frac{4w}{\pi D(t)^2} \tag{2}$$

where w: weight acting on the sample.

5. Longitudinal true strain,

$$\varepsilon_t(t) = \ln \frac{L(t)}{L_o} = \ln \left( 1 + \frac{\Delta L}{L_o} \right) = \ln \left( 1 + \varepsilon_e \right)$$
(3)

where  $\varepsilon_e$ : engineering strain

6. Strain rate,

$$\dot{\varepsilon}(t) = \frac{v(t)}{L(t)} \tag{4}$$

Using the above formulae, for each set of experiments, present the following plots with labels.

- 1. Stress, strain, strain rate and relative sample volume as a function of time:  $\sigma(t)$ ,  $\varepsilon_t(t)$ ,  $\dot{\varepsilon}(t)$  and  $V(t)/V_o$
- 2. Stress-strain relations:  $\sigma(t)$  vs  $\varepsilon_t(t)$

### Discussion

- 1. Experimental configuration
  - (a) Why do we apply oil on the surface of the sample before testing?
  - (b) Will your results change if we avoid this step? Explain.
- 2. Variability in data
  - (a) Within a single dataset (one composition and specimen dimension), how much of variability in stress-strain response do you observe? You can present this as the standard deviation of strain at different stress levels (tabulated or a plot).
  - (b) List the potential sources of variability
- 3. Using the relative volume calculations, comment on the compressibility of the material.
- 4. Stress-strain behavior of the dough samples (use data from a single specimen dimension)
  - (a) When deformation occurs under constant load it is called *creep*. Are you performing a creep experiment?
  - (b) Within a single experiment, is the stress in your sample constant? Why or why not?
  - (c) In general, what does the slope of the stress-strain curve tell us about the material response macroscopically and microscopically? For your dataset, is the slope of the stress-strain curve a constant within one experiment? Why?
  - (d) Describe the mechanical response of dough with specific reference to the phenomena discussed previously. How will the response vary with a change in the 1. flour to water ratio and 2. temperature? Why?
- 5. Effect of loading rate
  - (a) Is the average stress-strain response different for different sample dimensions?
  - (b) Should the material response be sensitive to sample size and why? Does the data agree with your answer?
  - (c) Compare the strain rates,  $\dot{\varepsilon}(t)$ , measured for the three different sample dimensions. Now comment on stress-strain response as a function of strain rate.
  - (d) Suggest a more effective method to control the strain rate in your experiment.