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1 Suggested reading

• Molecular Driving Forces – Dill and Bromberg: Chapter 32

• Polymer Physics – Rubinstein and Colby: Chapters 4,5

2 Flory-Huggins Theory

In the last lecture, we developed the regular solution theory from a lattice model combining the entropy and
energy of mixing to calculate the free energy of mixing for regular solutions of two species with equal molecular
volume. We now want to develop a theory that can account for the fact that we do not always consider only
molecules that are of equivalent volume and equal volume to the lattice site. The includes the mixing of polymer
chains and here we want to consider how our previous calculations change when we consider the free energy
of mixing for polymers. Ideally, we would like a general approach that can handle binary polymer-polymer
solutions as well as polymer-solvent solutions. To do this we will follow the method developed by Flory and
Huggins known as the Flory-Huggins Theory and follow a lattice approach with a mean-field estimate as
we did for the regular solution theory. We will calculate the entropy of mixing and the energy of mixing and
combine these terms to develop a formulation for the free energy of mixing.

Here we define the system similarly as a lattice consisting of N sites of equal volume v0. We take n1 and n2
as the number of molecules of species 1 and 2, respectively, with degree of polymerizations x1 and x2, monomer
volumes v1 and v2 and total volumes V1 and V2. For the sake of simplifying the lattice model, we assume that
the monomer volume is equal to the volume of a lattice site v1 = v2 = v0. Therefore, each molecule occupies xi
lattice sites and there are ni molecules so the total volume for species i is given as:

Vi = nixiv0. (1)

From this we can see that the volume fractions φ1 and φ2 are given as:

φi =
nixi

n1x1 + n2x2
=
nixi
N

. (2)

3 Entropy of mixing for polymers

We first consider conceptually how the entropy of mixing changes as we move from regular solutions to polymer
solutions. We have already explored how entropy of polymer chains is heavily dominated by the number of
conformations available to the chain, which dictactes the size of a polymer and imparts entropic elasticity when
a polymer chain is stretched or compressed. However, we do not predict that the conformational entropy of the
polymer chains will change significantly when transitioning from free polymers in space to polymers in solution,
if we assume the chains are ideal. That is, we ignore the excluded volume from other chains. This is to say
that we expect that the number of conformations available to a polymer is approximately the same in free space
and in solution. Thus, the major source of entropy associated with mixing polymers should be translational –
or the fact that the whole polymer chain can access more configurations by being moved from a sample of pure
polymer into a polymer blend or a solvent. In this light, we can view the whole chain as a large molecule gains
translational entropy by having more locations to place its center of mass as we had in the regular solutions
theory. Note: this is equivalent to the entropy of an ideal gas. Thus, the entropy per molecule can be written
as:

Si = kB lnVi (3)

Therefore, we can write down the entropy per molecule for the following conditions where P denotes pure and
M denotes mixed:
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SP
1 = kB lnV1 = kB ln(n1x1v0) (4)

SP
2 = kB lnV2 = kB ln(n2x2v0) (5)

SM
1 = kB lnNv0 = kB ln[(n1x1 + n2x2)v0] (6)

SM
2 = kB lnNv0 = kB ln[(n1x1 + n2x2)v0] (7)

Therefore, we can calculate the total change in entropy on mixing:

∆SM = n1S
M
1 + n2S

M
2 − n1SP

1 − n2SP
2 (8)

= −kB
[
n1 ln

(
n1x1

n1x1 + n2x2

)
+ n2 ln

(
n2x2

n1x1 + n2x2

)]
(9)

= −kB [n1 lnφ1 + n2 lnφ2] (10)

∆SM

N
= −kB

[n1
N

lnφ1 +
n2
N

lnφ2

]
(11)

∆SM

N
= −kB

[
φ1
x1

lnφ1 +
φ2
x2

lnφ2

]
(12)

Note that in Eq. 12, we have an analogous form of what we found for regular solution theory. Mole fraction
is replaced by volume fraction and we have scaled the pre-factors by the degree of polymerization. Note that in
the case where the degree of polymerization goes to 1 (solvents; x1 = x2 = 1) the equations become equivalent.

4 Energy of mixing for polymers

Last time we derived the interaction parameter χ for regular solution theory using a mean-field approximation.
As above, we assume ideal chain behavior and re-derive this for the case where we have polymers with degrees
of polymerization x1 and x2. We can expect that the energy of mixing for polymers can either be negative
(promotes mixing) or positive (opposes mixing). Again, we use a lattice model with a mean-field approximation
that posits that the local variations in concentration are not significantly different that the overall concentra-
tion. That is, the favorable or unfavorable interactions between monomers are small enough that they do not
significantly affect random placement on the lattice. Further, in the regular solution theory all species are freely
able to move and there is no local ‘connection’ to other species of the same type. Clearly, this is not the case
for polymer chains as each monomer has to be associated to two neighbors of the same type (only one at the
chain ends). However, in the Flory-Huggins approach we ignore this fact and account for the energy of mixing
as if it is a mixture of ideal gases as before. This is analogous to the assumption of the dilute gas of monomers
used in the Flory theory of real polymer chains. Essentially, this will lead to the same derivation as we did in
the note from Lecture 7 for the energy of mixing per lattice site where we substitute the mole fractions with
volume fractions φ1 and φ2:

∆UM

NkBT
= χφ1φ2. (13)

Where as before, we have:

χ =
z

kBT

(
w12 −

w11 + w22

2

)
. (14)

5 Flory-Huggins free energy of mixing for polymers

As before we can combine Eqs. 12 and 13 to calculate the full free energy of mixing in this system.

∆FM = ∆UM − T∆SM . (15)

Writing the free energy normalized per lattice site we find that:

∆FM

NkBT
= χφ1φ2 +

φ1
x1

lnφ1 +
φ2
x2

lnφ2 . (16)

We can have a few cases of mixtures:
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• solvent–solvent: x1 = x2 = 1

• solvent–polymer: x1 = 1, x2 = large

• polymer–polymer: x1 = large, x2 = large

By inspection, we see that the solvent–solvent case reduces to the regular solution theory and, thus, the Flory-
Huggins theory is a more general result. In the solvent–polymer and polymer–polymer cases we have asymmetric
free energies dictated by the degrees of polymerization.

Furthermore, we can see that the favorable entropy of mixing decreases as the degree of polymerization
of either or both species increases; that is polymers become less likely to mix if the degree of polymerization
of either species is very large. In addition, we see that χ ∝ 1

T and thus the energy of mixing will vary with
temperature. This leads to interesting behavior where polymer solutions can change solubility dramatically over
small ranges of temperatures. We will explore this in more detail in future lectures.
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