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1 Suggested reading

• Polymer Physics – Rubinstein and Colby: Chapter 7

2 Thermodynamics of rubber

In the last section, we considered cross-linking and gelation reactions that formed polymer networks and gels.
As reaction proceeds sufficiently far beyond the gel point, pc, most of the polymer content will be included
in the gel as a single macroscopic network polymer (Pgel ≈ 1). These soft solids are a broadly useful class
of materials and as engineers we are interested in understanding their mechanical properties. A class of soft,
polymer networks that have been studied in detail are rubbers, which comprise many commodity products
such as rubber bands, car tires, gaskets, and adhesives. These materials can undergo large elastic deformations
without breaking; here, we explore the physics that enable these extremely useful properties. As we will see,
entropic elasticity of polymer chains is the origin of these fascinating mechanical properties.

Let us consider a polymer network. Thermodynamics describes the change in internal energy of this system
as the sum of all changes in energy. This includes the heat added to the system TdS, the work done to change
the volume of the polymer network −pdV , and work done to deform the polymer network fdL, where f is the
force of deformation and L is the deformation length.

dU = TdS − pdV + fdL. (1)

This differential form describes the change in internal energy of the polymer network with a corresponding
entropy change dS, volume change dV , or change in network length dL and is a thermodynamic state function
of S, V , and L. We can transform this to the Helmholtz free energy F

F = U − TS. (2)

and consider the differential form

dF = dU − d(TS) = dU − TdS − SdT (3)

= −SdT − pdV + fdL (4)

=

(
∂F

∂T

)
V,L

dT +

(
∂F

∂V

)
T,L

dV +

(
∂F

∂L

)
T,V

dL. (5)

This implies that (
∂F

∂T

)
V,L

= −S ;

(
∂F

∂V

)
T,L

= −p ;

(
∂F

∂L

)
T,V

= f. (6)

The Helmholtz free energy is a thermodynamic state function of T , V , and L. Thus, a second derivative of the
Helmholtz free energy does not depend on the order of differentiation.

∂2F

∂T∂L
=

∂2F

∂L∂T
(7)

Combining Equation 6 and 7, we can define a Maxwell relation:

−
(
∂S

∂L

)
T,V

=

(
∂f

∂T

)
V,L

. (8)

We then consider the force f that is required to deform the polymer network, which is comprised of two
contributions one related to the change in internal energy with a change in length and one related to the change
in entropy with a change in length.
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f =

(
∂F

∂L

)
T,V

=

[
∂(U − TS)

∂L

]
T,V

=

(
∂U

∂L

)
T,V

− T
(
∂S

∂L

)
T,V

. (9)

The entropic term can be rewritten using the Maxwell relation from Equation 8:

f =

(
∂U

∂L

)
T,V

+ T

(
∂f

∂T

)
V,L

= fE + fS . (10)

where fE is the energetic contribution to the force and fS is the entropic contribution to the force.
As discussed earlier in the course, the force required for deformation in typical crystalline solids is heavily

dominated by the energetic contribution. This is caused by the increase in internal energy when the crystalline
lattice is distorted from its equilibrium conformation. However, in polymer networks, we generally take an
ideal assumption that there is no energetic contribution to elasticity, fE = 0. For small deformations and most
polymer networks this is a fair assumption, the interactions of the monomers along the backbone do not alter
significantly with deformation as the local molecular environment is basically indistinguishable between the at
rest and deformed states. Therefore, as was the case for individual chains, the elasticity of polymer networks is
driven by entropy.

In addition, the entropic nature of elasticity in polymer networks imparts thermoelastic behavior whereby
the force at constant extension increases with increasing temperature. This is the opposite behavior as for
typical crystalline solids where the force at constant extension decreases weakly with increasing temperature.
In polymer networks, each network strand loses conformation entropy upon stretching meaning that ∂S/∂L < 0
and so the entropic contribution to the forces increases with increasing temperature.

fS = T

(
∂f

∂T

)
V,L

= −T
(
∂S

∂L

)
T,V

. (11)

The theory of rubber elasticity has been developed to describe the elastic properties of polymer networks
and is a molecular view of the network behavior. Below we describe rubber elasticity in one of its most common
forms, known as the affine network model. The affine network model describes well the mechanical behavior
of polymer networks but does not account for all aspects of the systems, such as entanglements, loops, cross-
link fluctuations, and dangling ends. As such other models have been applied, e.g., phantom network model,
entangled rubber elasticity, real elastic network theory, and others. In this discussion, we describe the affine
network model in detail to provide physical insight into the entropic nature of rubber elasticity. In future
lectures, we will present the phantom network model and real elastic network theory but not derive them.

3 Affine network theory

One of the most attractive properties of polymer networks and gels is their ability to deform reversibly up to
several times their size and over many cycles. The elastic behavior of polymer networks is caused by the entropic
elasticity of the individual polymer chains that comprise the network, the network strands. A simple model
that describes the rubber elasticity of polymer networks is the affine network model, described originally
by Kuhn. The central assumption of the affine network model is that the deformation of each network strand
is identical to the macroscopic deformation of the network. That is chain deformation is affine with network
deformation. In addition, it is assumed that the network is composed of Gaussian chains, that the network is
ideal fE = 0, that the volume of the network is constant, that the chains are flexible (T > Tg), and that there
is no chain slip or strain-induced crystallization.

Let us consider a polymer network that has dimensions Lx0, Ly0, and Lz0 in the undeformed state. If the
network is deformed in the x, y, and z dimensions by the factors λx, λy, and λz, the dimensions of the deformed
network will be

Lx = λxLx0, Ly = λyLy0, Lz = λzLz0. (12)

We assume that each network strand is composed of N monomers. If we zoom in on a given network strand
in the undeformed case, we can decompose the end-to-end vector ~R0 into its projections along the x, y, and z
directions of Rx0, Ry0, and Rz0. In this model, the junction points or the ends of the network strands do not
fluctuate in space and are deformed along with the macroscopic deformation of the network. This implies that
the chain in the deformed state ~R has projections

Rx = λxRx0, Ry = λyRy0, Rz = λzRz0. (13)
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Recall, from the Lecture Notes, the entropy of a polymer chain of N Kuhn monomers each of length b with
end-to-end vector ~R

S(~R,N) = −3

2
kB

~R2

Nb2
+ S(0, N) = −3

2
kB

R2
x +R2

y +R2
z

Nb2
+ S(0, N). (14)

Therefore, the entropy change of the individual chain upon deformation is the difference in entropy between the
deformed and non-deformed states:

S(~R,N)− S(~R0, N) = −3

2
kB

R2
x +R2

y +R2
z

Nb2
+

3

2
kB

R2
x0 +R2

y0 +R2
z0

Nb2
(15)

= −3

2
kB

(λ2x − 1)R2
x0 + (λ2y − 1)R2

y0 + (λ2z − 1)R2
z0

Nb2
. (16)

The entropy change for the whole network upon deformation is the sum of the entropy changes for the
individual network strands over all n network strands:

∆Snet = −3

2

kB
Nb2

[
(λ2x − 1)

n∑
i=1

(Rx0)2i + (λ2y − 1)

n∑
i=1

(Ry0)2i + (λ2z − 1)

n∑
i=1

(Rz0)2i

]
. (17)

Assuming that the polymer network was formed by cross-linking chains in the ideal state, then we can compute
the components of the mean-square end-to-end distance in the undeformed state

〈R2
x0〉 =

1

n

n∑
i=1

(Rx0)2i =
Nb2

3
= 〈R2

y0〉 = 〈R2
z0〉. (18)

Therefore,

n∑
i=1

(Rx0)2i =

n∑
i=1

(Ry0)2i =

n∑
i=1

(Rz0)2i =
n

3
Nb2. (19)

Combining Equation 17 and 19, we can write the total entropy change upon deformation of the network:

∆Snet = −3

2

kB
Nb2

[
(λ2x − 1)

n

3
Nb2 + (λ2y − 1)

n

3
Nb2 + (λ2z − 1)

n

3
Nb2

]
(20)

= −nkB
2

(λ2x + λ2y + λ2z − 3). (21)

As stated in the assumptions, the main contribution to the free energy change in the network upon defor-
mation comes from this entropic term.

∆Fnet = −T∆Snet =
nkBT

2
(λ2x + λ2y + λ2z − 3). (22)

Polymer networks, in the dry state, or gels swollen in an incompressible fluid, are often considered to be
incompressible so that the volume does not change significantly upon deformation:

V = Lx0Ly0Lz0 = LxLyLz = λxLx0λyLy0λzLz0 = λxλyλzV. (23)

This implies that λxλyλz = 1. In reality, there is a small volume change upon deformation but this is quite
small and negligible.

To predict the modulus of elasticity for the model polymer network, we consider a uniaxial deformation.
The non-deformed dimensions of the network adjust to maintain a constant volume

λx = λ, λy = λz =
1√
λ
. (24)

These can be combined with Equation 22 to calculate the free energy change upon uniaxial deformation at
constant volume

∆Fnet =
nkBT

2
(λ2 +

2

λ
− 3). (25)
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The force required to induce the uniaxial deformation λ can thus be calculated from Equation 6

fx =
∂∆Fnet

∂Lx
=
∂∆Fnet

∂λLx0
=

1

Lx0

∂∆Fnet

∂λ
(26)

=
nkBT

Lx0

(
λ− 1

λ2

)
. (27)

As the sample volume is increased, this force would naturally increase and we generally normalize the force fx
to the cross-sectional area to obtain a stress

σxx =
fx

LyLz
=

nkBT

Lx0LyLz

(
λ− 1

λ2

)
=

nkBT

Lx0Ly0Lz0
λ

(
λ− 1

λ2

)
(28)

=
nkBT

V

(
λ2 − 1

λ

)
. (29)

This stress is the true stress in the network. Since it can be difficult to measure the cross-sectional area of
the sample in situ during deformation, we often use the engineering stress, which is normalized to the original
cross-sectional area Ly0Lz0

σeng =
fx

Ly0Lz0
=

nkBT

Lx0Ly0Lz0

(
λ− 1

λ2

)
=
nkBT

V

(
λ− 1

λ2

)
=
σtrue
λ

. (30)

The shear modulus G relates the stress and the deformation. Equation 30 shows that

G =
nkBT

V
= νkBT =

ρ<T
Ms

(31)

Where ν is the number density of network strands ν = n/V , ρ is the network density (mass per unit volume),
Ms is the number-average molar mass of the network strands, and < is the gas constant. This derivation arises
from the entropic elasticity from the individual Gaussian network strands and shows that the modulus scales
linearly with network strand density. More precisely, the modulus of a polymer network is kBT per network
strand. Further, the modulus increases directly with temperature owing to this entropic driving force that is
the basis of rubber elasticity.

Rubber elasticity provides a simple physical framework to calculate the mechanical properties of networks
and gels and is also instrumental in predicting gel swelling.
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