

Macromolecular engineering of networks and gels

ETHzürich

Macromolecular Engineering: Networks and Gels Instructor: Prof. Tibbitt

Macromolecular engineering of networks and gels

Polymer network or gel

10 nm scale

ETHzürich

Viscoelastic insoluble network or gel

Macromolecular Engineering: Networks and Gels Instructor: Prof. Tibbitt

Macroscale properties are controlled by molecular details

Molecular details

Macromolecular Engineering: Networks and Gels Instructor: Prof. Tibbitt

Data on viscoelasticity of 'real' materials

Anton-Paar

Chemically cross-linked hydrogel network

Marco-Dufort and Tibbitt Mater. Today Chem. 2019, 12, 16–33.

ETHzürich

Wassim Dhaouadi & Bruno Marco-Dufort

Dynamic covalent cross-linked hydrogel

Double network hydrogel

ETHzürich

Wassim Dhaouadi & Bruno Marco-Dufort

Collagen hydrogels

Corning, Inc.

Cross-linking criteria

Network architecture

- Enable linking between polymer chains
- Sufficiently high reaction efficiency to generate network
- Ideally mild for biological use

Chain and step-growth polymerization mechanisms

Chain polymerization

- Heterogeneous structure
- Kinetic chain length controls mechanical properties

Step-growth polymerization

- Homogeneous structure
- Polymer precursors controls mechanical properties

Chain polymerization of (meth)acrylates

Peptide = YRGDS or YRDGS

Fig. 1. Chemical structures of the multifunctional macromer PEGDA and monovinyl macromer acryloyl-PEG-Arg-Gly-Asp (Acr-PEG-RGD) used for hydrogel fabrication and osteoblast encapsulation.

Fig. 5. Cytoskeleton organization observed with fluorescent confocal microscopy of actin-stained osteoblasts after 12 h on 10% PEGDA in PBS with no Acr-PEG-RGD (a), 0.5 mm Acr-PEG-RGD (b), and 5.0 mm Acr-PEG-RGD (c), bar = 20 µm.

Fig. 6. Osteoblasts encapsulated in hydrogels formed from 10% PEGDA in PBS (a), 20% PEGDA in PBS (b), and 30% PEGDA in PBS (c) 24 h after encapsulation and stained with a LIVE/DEAD cell assay, where live cells fluoresce green and dead cells fluoresce red.

Burdick and Anseth Biomaterials 2002, 23, 4315–4323.

ETHzürich

Macromolecular Engineering: Networks and Gels Instructor: Prof. Tibbitt

Figure 9 / Mechanism of Free Radical Polymerization

4 h

Chain polymerization of degradable (meth)acrylates

Figure 1. Reaction scheme for the synthesis of polymerizable PEG-co-poly(α -hydroxy acid) di- and tetraacrylates and hydrogels, as well as their degradation.

Sawhney et al. *Macromolecules* **1993**, *26*, 581–587.

ETHzürich

Macromolecular Engineering: Networks and Gels Instructor: Prof. Tibbitt

Figure 5. Percent mass loss as a function of degradation time for hydrogels with an increasing number of PLA-*b*-PEG-*b*-PLA cross-links per backbone chain: (\bullet) N = 10; (\blacksquare) N = 100; and (\diamond) N = 1000. Other model parameters for all curves: $W_{\text{PA}} = W_{\text{PEG}} = 50 \text{ wt }\%$ and $k' = 0.0003 \text{ min}^{-1}$.

Metters et al. J. Phys. Chem. B 2000, 104, 7043–7049.

Polyacrylamide hydrogels

Polyacrylamide

bio-rad.com

Methacryloyl gelatin

Loessner et al. Nat. Protoc. 2016, 11, 727–746.

Step-growth polymerization (polycondensation) mechanisms

Grim et al. J. Controlled Release 2015, 219, 95–106.

ETHzürich

Macromolecular Engineering: Networks and Gels Instructor: Prof. Tibbitt

Thiol-ene cross-linking

ETHzürich

Grim et al. J. Controlled Release 2015, 219, 95–106.

Macromolecular Engineering: Networks and Gels Instructor: Prof. Tibbitt

17

Thiol-vinyl sulfone cross-linking

Figure 1. Synthesis scheme for the stepwise copolymerization of biomolecules containing free thiols on Cys residues with end-functionalized PEG macromers bearing conjugated unsaturated moieties.

Lutolf and Hubbell *Biomacromolecules* **2003**, *4*, 713–722.

ETHzürich

Macromolecular Engineering: Networks and Gels Instructor: Prof. Tibbitt

SPAAC cross-linking

DeForest et al. Nat. Mater. 2009, 8, 659–664.

ETHzürich

Macromolecular Engineering: Networks and Gels Instructor: Prof. Tibbitt

nature materials

LETTERS

Comparison of chain and step growth networks

Tibbitt et al. *Macromolecules* **2013**, *46*, 2785–2792.

Comparison of chain and step growth networks

Tibbitt et al. *Macromolecules* **2013**, *46*, 2785–2792.

