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Learning Objectives

• Identify the different types of biopolymers found in living organisms

• Relate polymer physics concepts to functions in living systems
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1.1 Biopolymer filaments and networks 
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Intracellular

 Actin
 Microtubules
 DNA

Extracellular

 collagen
 PS / PG



1.1 Biopolymer filaments and networks 
1 nm 10 nm 100 nm0.1 nm
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solvent = H2O (+ salts) most filaments have directional polarity

heterogeneous building blocks
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ATP+H20 →ADP+Pi

polymerization / depolymerization is dynamic
either non-covalent bonds

or covalent bonds

Polymerization driven by chemical reaction
(ATP hydrolysis , ΔG=−31 kJ/mol)
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1.1 Biopolymer filaments and networks 
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1.2 Elasticity of biopolymer filaments

flexible (freely jointed chain)
𝐿𝐿𝑝𝑝 ≪ 𝐿𝐿

semiflexible 
𝐿𝐿𝑝𝑝 ≅ 𝐿𝐿

stiff (rod-like)
𝐿𝐿𝑝𝑝 ≫ 𝐿𝐿

θ

𝑠𝑠

Filament stiffness quantified by the persistence length

 related to filament bending rigidity 𝜅𝜅 Lp = 𝜅𝜅/𝑘𝑘𝐵𝐵𝑇𝑇

 decay length of the angular correlation along contour  < cos 𝜃𝜃 > = 𝑒𝑒−𝑠𝑠/𝐿𝐿𝑝𝑝
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1.2 Elasticity of biopolymer networks

Network properties depend on the nature of the interactions between filaments
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intermolecular interactions

entanglement crosslinking protein



1.2 Elasticity of biopolymer networks

At small strains & in linear regime  𝜏𝜏 = 𝐺𝐺𝐺𝐺 (Hooke’s Law)
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1.2 Elasticity of biopolymer networks

At small strains & in linear regime  𝜏𝜏 = 𝐺𝐺𝐺𝐺 (Hooke’s Law)

Strain-stiffening at high strain
• entropic elasticity
• reorientation of load-bearing elements

entropic elasticity reorientation of elements
along direction of strain
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1.2 Elasticity of biopolymer networks

Strain-stiffening under tensile & shear loading

 compliance at very low strain allows dynamic 
conformational changes & movement

 stiffening at larger strain allows mechanical 
protection of cells & tissues to prevent large 
deformation and tissue rupture
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Biopolymer networks often display strain-stiffening at high strains 



1.3 Liquid-liquid phase separation

Proteins & nucleic acids can exist in dilute phase or dense phase – with coexistence of the two phases

analogous to Flory-Huggins theory
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1.3 Liquid-liquid phase separation

Proteins & nucleic acids can exist in dilute phase or dense phase – with coexistence of the two phases

 Phase separation occurs in normal biological function (reversible condensates) 
and in pathological contexts (irreversible condensates)
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2. DNA elasticity
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2.1 Nucleic Acids

 sugar-phosphate backbone + nitrogenous bases
 deoxyribonucleic acid (DNA) or ribonucleic acid (RNA)
 phosphate group, charged PO4

−

 4 nitrogenous bases form the sequence 

 DNA
 as double stranded helix (hydrogen bonds between base pairs)
 as single strand
 structure independent of sequence

 RNA
 as single strand
 forming “hairpin” loops (sequence-dependent)

nitrogenous 
bases

3nm
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2.2 Does DNA behave like an ideal chain?

 Measuring 2D fluctuations
o confining chain on a surface 
o image chain conformations, measure < 𝑅𝑅𝐺𝐺 >
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2.2 Does DNA behave like an ideal chain?

 Measuring 2D fluctuations
o confining chain on a surface
o image chain conformations, measure < 𝑅𝑅𝐺𝐺 >

 scaling of < 𝑅𝑅𝐺𝐺 > with chain length: < 𝑅𝑅𝐺𝐺 > ∝ 𝑁𝑁3/4

slope 0.78

bp = base pairs

At zero-force, DNA conformation modeled by a 
self-avoiding chain

NB: Flory exponent for a real chain in a good solvent

in 2D 𝜈𝜈 = 3
4

in 3D 𝜈𝜈 = 3
5
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2.3 Stretching a single DNA molecule using magnetic tweezers

Magnetic tweezers enable to measure force-extension relationship of nucleic acids

small magnets are used to apply 
stretch / torque on DNA

DNA is bound to glass slide on one 
end, and to a microbead ( ∅ 1-4.5µm)

Forces: 10 fN (10-11 N) to 100 pN (10-7N)

Force measurement based on the Brownian 
fluctuations of the bead 𝛿𝛿𝑥𝑥2 ∝ 1/𝐹𝐹
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2.3 Elasticity of DNA under force (entropic regime)

 At forces, freely-jointed chain model is sufficient:
𝐿𝐿

𝐿𝐿0
≅ 1

3
𝐹𝐹𝐹𝐹

𝑘𝑘𝐵𝐵𝑇𝑇

 At intermediate forces (< 70pN), the Worm Like 
Chain model fits better

WLC: with angular correlation between consecutive segments

 Persistence length 𝐿𝐿𝑝𝑝 = 50 𝑛𝑛𝑛𝑛 (dsDNA)

 Persistence length 𝐿𝐿𝑝𝑝 ≤ 1 𝑛𝑛𝑛𝑛 (ssDNA)

DNA elasticity under forces < 70pN is entropic
 Freely-jointed chain only valid at small forces

Freely Jointed Chain

Worm Like Chain

L/L0: relative chain extension
b: Kuhn length
F: force applied
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Force-extension measured using magnetic tweezers



2.4 Biological relevance of DNA elasticity

DNA stretch / bending / twist important 
 protein-DNA binding depends on curvature

 enzyme activity (molecular motors)
unwind  (helicase)
read / transcribe (RNA polymerases)
copy / paste (DNA polymerases)
cut (nuclease, “molecular scissors”,

e.g. Crispr-Cas9)

 rate of these motors depends on extension of DNA,
motor (polymerase) rate peaks at 4pN

S. Sevier, PRR, 2, 023280 (2020)
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Extensional and rotational conformation of 
DNA critical for biological function. 



2.4 Beyond the ideal chain: DNA packing in the nucleus
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N = 6.4 x 109 bp



2.4 Beyond the ideal chain: DNA packing in the nucleus
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Compacted DNA no longer a random coil 

nucleus

protein-DNA complexes coils & loops

phase-separated 
compartments

Chromatin conformation & rheology is scale dependent

N = 6.4 x 109 bp



2. Summary

 DNA can be in double stranded (stiffer) or single strand (softer) configuration

 DNA elasticity: entropic origin
 self-avoiding chain at rest (2D)
 freely-jointed chain (low forces) / worm-like chain under higher forces 

 Mechanical work on DNA by molecular motors allow to stretch / twist / uncoil it

 In the cell, DNA is highly compacted into higher order “polymer-like” called chromatin
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3. Actin filaments and actin networks: 
dynamic cell scaffolding
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Network architecture & mechanics is determined by crosslinker type and concentration

3.1 Actin filaments and actin networks

Filaments: 
 monomers assemble via non-covalent bonds: dynamic
 helical assembly of two polar strands, ∅ ~ 7nm
 persistence length: Lp ~ 10µm (semi-flexible filament)

Networks
 large diversity of architectures
 many crosslinking elements (proteins, motors)

double helical strand
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3.2 Actin scaffolding in cell function

Cell “skeleton”

shape, resistance to tensile load, 
surface tension 
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Cell dynamics

shape changes, migration

fish scale keratocyteSuperresolution image of actin in a cell. 
The z-dimension information is color-coded



3.2 Actin scaffolding in cell function

Cell “skeleton”

shape, resistance to tensile load, 
surface tension 
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Superresolution image of actin in a cell. 
The z-dimension information is color-coded

Active Matter

actin + motors = contraction

Cell dynamics

shape changes, migration

Electron Microscopy, scale bar 
1µm (a-d), 50nm (e-h)



3. Summary

 actin is semiflexible polymer

 actin polymerization is dynamic

 actin is organized in networks
branched / parallel bundles / contractile bundles

 actin drives cell movement at the macro-scale
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Conclusion
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Actin determines cell shape
& drives movement

Diversity of structures, 
bending rigidities,

persistence lengths (nm – mm)

Phase separation,
compartmentalizationStrain-stiffening

of crosslinked 
networks

Tension-dependent 
mechanical work

of molecular motors

Mechanical strength
resistance to shear
resistance to stretch

Highly dynamic cell scaffolding

DNA
Self-avoiding chain (2D) 
Worm like chain under 

stretch

Entropic elasticity

extra cellular spacecellular spacenucleus
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