Date	
Name	
Legi-Nr.	

The following exercises should be solved in preparation to the experiment. Please send a copy of the exercises to the assistant via email at least the evening before the experiment.

- 1. Compare a continuous and discontinuous process.
- 2. Define the ideal and experimental mean residence time.
- 3. Explain with a drawing how to experimentally measure the residence time distribution of a tracer.
- 4. Explain why the tracer should have the following properties:
 - Similar flow properties as the main fluid
 - No interactions with the walls of the apparatuses
 - No reactions with other components
- 5. Compare the mixing properties of a CSTR and a PFR.
- 6. With the data that you can find on the script, calculate the theoretical mean residence time, τ , for the CSTR cascade as well as for the flow pipe experiments.
- a) CSTR cascade

Theoretical mean residence time $\tau = \frac{V_R}{\dot{V}}$

After the first CSTR	 S
After two CSTRs	 S
After three CSTRs	 s

b) Flow pipe

Flow pipe volume $(V_R = \pi/4 d^2 L)$ L

S	at 60 L/h	Theoretical mean residence time
S	at 360 L/h	