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1 Suggested reading

• Polymer Physics – Rubinstein and Colby: Chapter 7

• Viscoelastic Properties of Polymers – Ferry

2 Viscoelasticity

The classic theory of elasticity describes the behavior and mechanical properties of elastic solids. In these
materials, stress is directly proportional to strain for small deformations and independent of the strain rate, as
described by Hooke’s law. The classic theory of hydrodynamics describes the behavior of viscous liquids. In
these materials, stress is directly proportional to the strain rate and independent of the magnitude of the strain,
as described by Newton’s law. These extremes are idealizations yet many engineering materials approximate
ideal Hookean elastic solids or ideal Newtonian liquids at infinitesimally small strains or strain rates. However,
with finite strains or strain rates many materials deviate from these ideal properties and some materials have
aspects of a Hookean elastic solid and a Newtonian liquid embedded in their molecular structure. These latter
materials exhibit viscoelastic behavior as they respond to deformation with both a viscous and an elastic
response. In many of the materials that are used for modern engineering, viscoelastic behavior is negligible.
However, the mechanical behavior of polymer solutions, networks, and gels is dominated by viscoelasticity and
this remarkable phenomena remains an active field of research.

The importance of viscoelastic behavior in polymeric materials should not surprise us. Any deformation of
the material induces deformation of the individual chains which is jiggling with thermal energy on the length
scale of bonds, atoms, monomers, chain segments, and up to the whole chain. Upon deformation, the chain
adopts a new configuration and the jiggling adapts to the new confirmation. The molecular motions at different
length scales result in relaxation times on different time scales. In contrast, the deformation of a classic metal or
crystalline solid results in the displacement of individual atoms away from an equilibrium position that induces
a local restoring force according to the interatomic potential well. The elastic modulus of these materials
can be predicted from the interatomic potentials. The deformation of a liquid composed of small molecules
results in viscous flow that is characterized by the variation in the distribution of molecules interacting with a
given molecule under stress. These rearrangements are local and, as with solids, the viscosity of a liquid can
be calculated, in principle, from molecular information. Polymeric materials exhibit both elastic and viscous
signatures and predicting these behaviors from molecular information is much more challenging. However, the
inverse problem is more reasonable. Careful measurements of the viscoelastic behavior or a polymeric material
can be used to elucidate structural features in the material including short- and long-range interactions as well
as to assist in the engineering of functional polymeric materials for a range of applications.

3 Linear viscoelasticity

The mechanical properties of the networks and gels that we have been discussing exhibit are measured using
linear viscoelasticity. One way to visualize the principles of linear viscoelasticity is to consider a simple shear
geometry, in which the material is deformed between two flat and rigid surfaces separated by a distance h. We
assume strong adhesion between the material and the surfaces such that no slippage occurs at these interfaces.
The bottom surface is fixed and the top surface is free to move under a defined force f or a defined displacement
∆x. If a force f is applied to the top surface the force will be transferred through the material (solid or liquid)
and fixing the bottom surface requires and equal-and-opposite force −f at the bottom surface.
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We defined the shear stress σxy or σ as the ratio of the applied force to the cross-sectional area of the
surfaces A:

σ ≡ f

A
. (1)

The shear strain γ is defined as the displacement of the top surface ∆x over the separation gap h:

γ ≡ ∆x

h
. (2)

With these definitions for stress and strain the entire sample experiences the identical shear stress and shear
strain, assuming that the material deforms uniformly.

If we place an ideal elastic solid between the two surfaces, the shear stress σ will vary directly with the shear
strain γ and the constant of proportionality is the shear modulus G:

G ≡ σ

γ
. (3)

Equation 3 is Hooke’s law of elasticity and is generally valid for solids under small strain deformations. The
SI unit for shear modulus is Pa ≡ kg m−1 s−2.

If instead, we place an ordinary liquid, composed of small molecules, between the two surfaces the stress
will vary directly with the shear rate γ̇, which is defined as the rate of change of the shear strain with time:

γ̇ ≡ dγ

dt
. (4)

For ordinary liquids, the shear stress is directly proportional to the shear rate and the constant of proportionality
is the shear viscosity η:

η ≡ σ

γ̇
. (5)

Equation 5 is Newton’s law of viscosity and this describes the behavior of Newtonian liquids. The SI unit
for viscosity is Pa s.

As discussed above, polymeric materials are neither ideal elastic solids or simple liquids and instead demon-
strate viscoelastic behavior. That is, they exhibit intermediate properties between Hookean solids and Newto-
nian liquids. A simple model of viscoelasticity is the Maxwell model that combines an ideal elastic element
in series with a perfectly viscous element. The Maxwell model is also referred to as the spring-dashpot model.
As the two elements are in series, the total shear strain is the sum of the strain in each element:

γ = γe + γv. (6)

And the stress σ is the same in each element:

σ = GMγe = ηM
dγv
dt

. (7)

As the model contains a viscous element the material will have the ability to relax stress on certain time
scales. The relaxation time τM for a Maxwell material is the ratio of the viscosity of the viscous element ηM
to the modulus of the elastic element GM :

τM ≡
ηM
GM

. (8)

On time scales shorter than the relaxation time the material behaves like a solid and on time scales longer
than the relaxation time the material flows like a liquid. In principle, the materials that we are studying have
viscoelastic properties and behave in part as a solid and in part as a liquid. For this reason, the relative response
can depend on the time scale of which we probe or observe the material.
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4 Boltzmann superposition principle

By definition, the material properties of viscoelastic materials are time dependent. As one example, we can
consider applying a step strain of magnitude γ at time t = 0 on the material. If we have a perfectly elastic
solid, the stress would jump to Gγ and remain there while the strain is applied. If we have a perfectly viscous
liquid, there would be a transient stress response that would spike and instantaneously decay to zero stress. In
viscoelastic materials, the stress following a step strain will have some time dependence σ(t). We define the
stress relaxation modulus G(t) as the remaining stress in the material at time t divided by the magnitude
of the step strain γ:

G(t) ≡ σ(t)

γ
. (9)

This is a time-dependent variant of Hooke’s law and the stress relaxation modulus decays on the time scale of
the relaxation time τM of the material to either an equilibrium modulus, Geq, for a viscoelastic solid or 0 for a
viscoelastic liquid.

At sufficiently small values of the applied strain, γ, the stress relaxation modulus behaves linearly and is
independent of strain. Therefore, doubling the strain in the linear region will double the stress. A consequence
of this linear viscoelastic behavior, is that the stress from any combination of small step strains is a simple
linear combination of the stresses that result from each individual strain δγi at time ti:

σ(t) =
∑
i

G(t− ti)δγi. (10)

More simply, Equation 10 states that, in the linear response regime, the stress that results from each strain is
independent of all the other strains. The system still remembers the previous strains and relaxes accordingly
as new strains are applied. The stress relaxation modulus informs how much stress remains at time t from the
past deformation δγi over the elapsed time (t− ti). Further, Equation 10 can be transformed from strain space
to time space using the definition of shear rate in Equation 4, which implies δγi = γ̇iδti:

σ(t) =
∑
i

G(t− ti)γ̇iδti. (11)

In the case of a smooth strain history, Equation 11 can be reformulated as an integral over all previous
strains.

σ(t) =

∫ t

−∞
G(t− t′)γ̇i(t′)dt′. (12)

We integrate from t = −∞ as we must account for all past strains to ensure that the whole history is accounted
for. Thus, the stress in a material is the result of all past deformations and the memory of each prior deformation
decays as the relaxation modulus decays, which is on the time scale of the relaxation time of the material.

5 Oscillatory dynamic mechanical analysis

One of the simplest and most common techniques to quantify the viscoelasticity of polymeric materials is
oscillatory dynamic mechanical analysis, often using a shear rheometer. In this approach, a sinusoidal strain
with an angular frequency ω is applied to the sample:

γ(t) = γ0 sin(ωt). (13)

Here, γ0 is the shear strain amplitude. The standard geometries for a shear rheometer are parallel plates, cone
and plate, or Couette cells. A major advantage of the oscillatory approach, is that it can easily probe the
viscoelastic response of the material on different time scales (τ ∝ 1

ω ) by varying the angular frequency ω.
If a perfectly elastic solid is investigated in oscillatory shear, then the stress in the sample can be related to

the strain using Hooke’s law:

σ(t) = Gγ(t) = Gγ0 sin(ωt). (14)

Here, the stress is perfectly in-phase with the deformation.
In contrast, if a Newtonian liquid is investigated in oscillatory shear, the stress in the sample can be related

to the shear rate using Newton’s law:
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σ(t) = η
dγ(t)

dt
= ηγ0ω cos(ωt) = ηγ0ω sin

(
ωt+

π

2

)
. (15)

Here, the stress oscillates with the same frequency ω but it is out-of-phase by π
2 .

The mechanical response of a viscoelastic material is between that of a Hookean solid and a Newtonian
liquid. The linear stress response of a viscoelastic material will also oscillate at the frequency of the applied
strain, but the stress is phase-shifted from the strain by a phase angle δ:

σ(t) = σ0 sin(ωt+ δ). (16)

The phase angle δ can take any value in the range 0 ≤ δ ≤ π
2 [for a Hookean solid δ = 0 and for a Newtonian

liquid δ = π
2 ] and can depend on the applied frequency. Thus, we can decompose the stress response into two

orthogonal components that each osciallate with the frequency ω, one component that is in-phase δ = 0 and
one component that is out-of-phase δ = π

2 :

σ(t) = γ0[G′(ω) sin(ωt) +G′′(ω) cos(ωt)]. (17)

We define G′(ω) as the storage modulus or elastic modulus and it is a measure of the elastic response of
the material, or how much of the strain energy is stored by the material. We define G′′(ω) as the loss modulus
or viscous modulus and it is a measure of the viscous response of the material, or how much of the strain
energy is dissipated by the material. As indicated by the formulation, G′(ω) and G′′(ω) both depend on the
frequency of the oscillatory shear.

Equation 17 can be related to Equation 16 using the trigonometric identity for the sine of a sum:

sin(ωt+ δ) = cos δ sin(ωt) + sin δ cos(ωt). (18)

Therefore, we can relate G′ and G′′ to the phase angle δ and the modulus amplitude σ0

γ0
for each frequency ω:

G′ =
σ0
γ0

cos δ, (19)

G′′ =
σ0
γ0

sin δ. (20)

We can then relate the tangent of the phase angle δ to the ratio of G′′ to G′:

tan δ =
G′′

G′
. (21)

We define tan δ as the loss tangent of the material. In general, when tan δ < 1 we consider the material to be
acting as a viscoelastic solid at that frequency, whereas when tan δ > 1 we consider the material to be acting as
a viscoelastic liquid at that frequency. In total, oscillatory shear is a powerful tool to investigate the viscoelastic
properties of networks and gels and is used extensively in current research.
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6 Experiment

Given the situation with COVID and distancing, we are unable to perform the experiment in person this
Semester. Therefore, we have prepared a video of the instrument setup and use. The video will walk you
through how the shear rheometer can be used to generate quantitative data on the viscoelastic properties of soft
materials. In addition, we will coordinate live sessions to further explore the rheology of the materials study,
address any questions, and guide the preparation of the requested reports. You should watch the video prior
to your assigned live session and discuss the questions in the video within your group. In addition,
the data will be made available with some guidelines for data plotting and you will benefit from analyzing the
data prior to the live session.

In this experiment, we will use a shear rheometer (Anton Paar MCR 502) to investigate the viscoelastic properties
of two samples that have been prepared by the lab organizers. The two samples are composed of Pluronic F-127
in aqueous solution at either 15 %w/v or 30 %w/v. [NB: The samples are prepared as % mass of Pluronic F-127
per volume of solvent (dH2O).] The unique properties of Pluronic F-127 enable solutions to form a gel above a
critical concentration, C gel, and above a critical temperature, T gel. In this case, C gel ≈ 20 %w/v and T gel ≈
15 ◦C. Therefore, the 30 %w/v sample behaves like a solid at room temperature, T ≈ 25 ◦C, and the 15 %w/v
sample behaves like a liquid. While the 30 %w/v sample behaves like a solid, both samples exhibit interesting
viscoelastic properties that we can study by performing rheometric analyses. This experiment will introduce
you to the basics of characterization and data analysis for viscoelastic materials.

6.1 Instrument setup

The first step is to initialize the instrument. Work closely with the lab assistant during these steps as the shear
rheometer is a sensitive and expensive piece of equipment.

1. Verify that the instrument is properly turned on with the proper bottom coupling, Peltier plate, installed.

2. On the computer, open the RheoCompass software.

3. Verify that the temperature is adjusted to the desired value, T = 25 ◦C.

4. Once connected, install the desired geometry into the upper coupling of the rheometer by aligning the
notch marks on the quick coupling. For these experiments, we will use a cone-plate geometry (CP25-2)
with a diameter of 25 mm, an angle of 2◦, and a truncation gap of 105 µm.

5. Once the geometry is installed, lower the geometry to a separation of ∼1 mm [0.5–2.0 mm] and then zero
the gap. This ensures that the instrument knows precisely where the geometry is.

6. Check that all steps have been completed and proceed to 6.2

6.2 Sample loading

In order to measure the samples, we need to load them properly on the instrument. Sample loading is one of
the largest sources of error in rheometric measurements and, thus, this step is critical. Consult with the lab
assistant during this step.

1. Raise the geometry to a gap of ∼10–20 mm.

2. Using a viscous pipette load ∼250 µL of the Pluronic F-127 30 %w/v sample in the center of the Peltier
plate directly below the geometry.

3. Lower the geometry to ∼2 mm. Lower again in successive cycles until the geometry makes contact with
the sample below while gently spinning the geometry. The lab assistant will show you correct technique
here.

4. Once the geometry is in contact with the sample, ensure that the sample is evenly spread over the geometry
surface area and that the sample is free of bubbles.

5. Lower the sample to the trimming position.

6. Trim or clean the excess material away from the geometry with the provided blue plastic spatula and then
press ‘Continue’.

7. The geometry will now lower to the test gap, 105 µm, and is ready for testing.
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6.3 Rheometric analysis

For viscoelastic materials, there are several tests that can be done to describe the rheology of the materials.
Here, we have setup a series of tests for each samples. In addition, we have prepared a frequency sweep (ω = 0.01
to 100 rad s−1; γ = 0.3%) of both materials prior to the lab test as these tests take about 1 h each.

1. Initialize the test.

2. Label your data file clearly with sample information (e.g., date, test name, material, geometry, tempera-
ture, etc.).

3. Start the test.

4. First, a strain sweep is performed. Here, the applied strain is increased from γ = 0.1% to γ = 100% at a
fixed frequency of ω = 10 rad s−1.

5. Second, a step strain experiment is performed. Here, the test occurs in three phases: a) low strain (γ = 1%
@ ω = 10 rad s−1), b) high strain (γ = 100% @ ω = 10 rad s−1), and c) a second cycle at low strain
(γ = 1% @ ω = 10 rad s−1).

6. Third, a shear rate ramp is performed. Here, the shear rate, γ̇, is increased from γ̇ = 0.1 s−1 to γ̇ = 100
s−1.

7. Fourth, a stress ramp is performed. Here, the applied stress, τ , is increased from τ = 1 Pa to τ = 250 Pa.

8. While the first sample is running proceed to 6.4.

9. Once all tests have completed, clean the sample by (i) raising the geometry to 60 mm, (ii) removing the
geometry, (iii) clean the surfaces of the Peltier plate and the cone-plate geometry, and (iv) reattach the
geometry.

10. Repeat 6.2 and 6.3 for the Pluronic 15 %w/v sample.

6.4 Sample investigation

While the rheometer is collecting the data, you should both observe the data as it populates the respective data
fields and also begin to ‘play’ with samples of the same materials that have been loaded into syringes. Explore
extruding both materials into the provided Petri dishes. Manipulate the materials with the provided spatulas.
How do the two materials differ in their properties? Can they be extruded? Do they retain their shape? How
would you describe the materials to your lab partners?

6.5 Data export

After completing all tests for both samples, make sure to export the raw data files. The lab assistants will send
you a copy of the raw files for the frequency sweeps.
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6.6 Live session

As we are unable to run the experiment in person this year, we will complement the video with a live session
to discuss the core concepts of the experiment together, to explore the rheology of the materials by hand, and
to begin the report in a setting that allows for direct feedback. These sessions will be organized in two hour
blocks with three Groups present at a time. The live sessions will be held on 22. October or 12. November at
08h00–10h00 or 14h00–16h00. You will be notified of your assigned live session.

6.6.1 Introduction (10′)

We will summarize the main points of the experiment in plenum and discuss core concepts on the viscoelastic
properties as measured by shear rheometry.

6.6.2 Play with the materials and connect to the questions from the video (30′)

We will interact with the materials sampled in the experiment and begin to connect the observed material
properties to the rheometric data generated and distributed to all of you. This part will be carried out in your
groups and supported by the teaching assistants.

6.6.3 Summarize (10′)

We will discuss the main findings of the different groups and go over any remaining questions.

6.6.4 Break (10′)

6.6.5 Work on the report (45′)

In your groups you will begin the process of preparing the report as described below. The teaching assistants
will remain available for questions and support.
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6.7 Data analysis and report

In the lab report for this experiment, please follow the provided structure as described below.

6.7.1 Introduction

Describe the motivation for the experiment, what was tested, what technique was used, and why? Provide any
hypothesis that you had at the beginning of the experiment.

6.7.2 Data analysis

Plot the raw data from the respective tests. For the frequency and strain sweeps, plot G
′

and G
′′

as a function
of ω or γ, respectively. For the step strain experiment, plot G

′
and G

′′
as a function of time with γ plotted on

a second y-axis. For the shear rate ramp, plot viscosity, η, and shear stress, τ , as functions of shear rate, γ̇. Fit
the data for each sample to the Hershel-Bulkley Model: τ = τ0 + kγ̇n, where k is the consistency in Pa sn and
n is the flow index. For the stress ramp, plot the viscosity, η, as a function of shear stress, τ .

6.7.3 Results and discussion

Describe the data collected in the experiments. Summarize what the rheological tests tell you about the material
properties. Relate this to the observations you made while ‘playing’ with the samples. Note that in the Hershel-
Bulkley Model, n = 1 describes a Newtonian liquid, n < 1 describes a shear-thinning material, and n > 1
describes a shear-thickening material.

6.7.4 Conclusion

Conclude the report.
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