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1 Suggested reading

• Polymer Physics – Rubinstein and Colby: Chapter 7

• Viscoelastic Properties of Polymers – Ferry

2 Viscoelasticity

The classic theory of elasticity describes the behavior and mechanical properties of elastic solids. In these
materials, stress is directly proportional to strain for small deformations and independent of the strain rate, as
described by Hooke’s law. The classic theory of hydrodynamics describes the behavior of viscous liquids. In
these materials, stress is directly proportional to the strain rate and independent of the magnitude of the strain,
as described by Newton’s law. These extremes are idealizations yet many engineering materials approximate
ideal Hookean elastic solids or ideal Newtonian liquids at infinitesimally small strains or strain rates. However,
with finite strains or strain rates many materials deviate from these ideal properties and some materials have
aspects of a Hookean elastic solid and a Newtonian liquid embedded in their molecular structure. These latter
materials exhibit viscoelastic behavior as they respond to deformation with both a viscous and an elastic
response. In many of the materials that are used for modern engineering, viscoelastic behavior is negligible.
However, the mechanical behavior of polymer solutions, networks, and gels is dominated by viscoelasticity and
this remarkable phenomena remains an active field of research.

The importance of viscoelastic behavior in polymeric materials should not surprise us. Any deformation of
the material induces deformation of the individual chains which is jiggling with thermal energy on the length
scale of bonds, atoms, monomers, chain segments, and up to the whole chain. Upon deformation, the chain
adopts a new configuration and the jiggling adapts to the new confirmation. The molecular motions at different
length scales result in relaxation times on different time scales. In contrast, the deformation of a classic metal or
crystalline solid results in the displacement of individual atoms away from an equilibrium position that induces
a local restoring force according to the interatomic potential well. The elastic modulus of these materials
can be predicted from the interatomic potentials. The deformation of a liquid composed of small molecules
results in viscous flow that is characterized by the variation in the distribution of molecules interacting with a
given molecule under stress. These rearrangements are local and, as with solids, the viscosity of a liquid can
be calculated, in principle, from molecular information. Polymeric materials exhibit both elastic and viscous
signatures and predicting these behaviors from molecular information is much more challenging. However, the
inverse problem is more reasonable. Careful measurements of the viscoelastic behavior or a polymeric material
can be used to elucidate structural features in the material including short- and long-range interactions as well
as to assist in the engineering of functional polymeric materials for a range of applications.

3 Linear viscoelasticity

The mechanical properties of the networks and gels that we have been discussing exhibit are measured using
linear viscoelasticity. One way to visualize the principles of linear viscoelasticity is to consider a simple shear
geometry, in which the material is deformed between two flat and rigid surfaces separated by a distance h. We
assume strong adhesion between the material and the surfaces such that no slippage occurs at these interfaces.
The bottom surface is fixed and the top surface is free to move under a defined force f or a defined displacement
∆x. If a force f is applied to the top surface the force will be transferred through the material (solid or liquid)
and fixing the bottom surface requires and equal-and-opposite force −f at the bottom surface.

We defined the shear stress σxy or σ as the ratio of the applied force to the cross-sectional area of the
surfaces A:

σ ≡ f

A
. (1)

The shear strain γ is defined as the displacement of the top surface ∆x over the separation gap h:
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γ ≡ ∆x

h
. (2)

With these definitions for stress and strain the entire sample experiences the identical shear stress and shear
strain, assuming that the material deforms uniformly.

If we place an ideal elastic solid between the two surfaces, the shear stress σ will vary directly with the shear
strain γ and the constant of proportionality is the shear modulus G:

G ≡ σ

γ
. (3)

Equation 3 is Hooke’s law of elasticity and is generally valid for solids under small strain deformations. The
SI unit for shear modulus is Pa ≡ kg m−1 s−2.

If instead, we place an ordinary liquid, composed of small molecules, between the two surfaces the stress
will vary directly with the shear rate γ̇, which is defined as the rate of change of the shear strain with time:

γ̇ ≡ dγ

dt
. (4)

For ordinary liquids, the shear stress is directly proportional to the shear rate and the constant of proportionality
is the shear viscosity η:

η ≡ σ

γ̇
. (5)

Equation 5 is Newton’s law of viscosity and this describes the behavior of Newtonian liquids. The SI unit
for viscosity is Pa s.

As discussed above, polymeric materials are neither ideal elastic solids or simple liquids and instead demon-
strate viscoelastic behavior. That is, they exhibit intermediate properties between Hookean solids and Newto-
nian liquids. A simple model of viscoelasticity is the Maxwell model that combines an ideal elastic element
in series with a perfectly viscous element. The Maxwell model is also referred to as the spring-dashpot model.
As the two elements are in series, the total shear strain is the sum of the strain in each element:

γ = γe + γv. (6)

And the stress σ is the same in each element:

σ = GMγe = ηM
dγv
dt

. (7)

As the model contains a viscous element the material will have the ability to relax stress on certain time
scales. The relaxation time τM for a Maxwell material is the ratio of the viscosity of the viscous element ηM
to the modulus of the elastic element GM :

τM ≡
ηM
GM

. (8)

On time scales shorter than the relaxation time the material behaves like a solid and on time scales longer than
the relaxation time the material flows like a liquid. In principle, the networks and gels that we are studying
have viscoelastic properties and behave in part as a solid and in part as a liquid and the relative response can
depend on the time scale of which we probe or observe the material.

4 Boltzmann superposition principle

By definition, the material properties of viscoelastic materials are time dependent. As one example, we can
consider applying a step strain of magnitude γ at time t = 0 on the material. If we have a perfectly elastic
solid, the stress would jump to Gγ and remain there while the strain is applied. If we have a perfectly viscous
liquid, there would be a transient stress response that would spike and instantaneously decay to zero stress.
In viscoelastic networks and gels, the stress following a step strain will have some time dependence σ(t). We
define the stress relaxation modulus G(t) as the remaining stress in the material at time t divided by the
magnitude of the step strain γ:

G(t) ≡ σ(t)

γ
. (9)
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This is a time-dependent variant of Hooke’s law and the stress relaxation modulus decays on the time scale of
the relaxation time τM of the material to Geq for a viscoelastic solid and 0 for a viscoelastic liquid.

At sufficiently small values of the applied strain γ, the stress relaxation modulus behaves linearly and is
independent of strain. Therefore, doubling the strain in the linear region will double the stress. A consequence
of this linear viscoelastic behavior, is that the stress from any combination of small step strains is a simple
linear combination of the stresses that result from each individual strain δγi at time ti:

σ(t) =
∑
i

G(t− ti)δγi. (10)

More simply, Equation 10 states that, in the linear response regime, the stress that results from each strain is
independent of all the other strains. The system still remembers the previous strains and relaxes accordingly
as new strains are applied. The stress relaxation modulus informs how much stress remains at time t from the
past deformation δγi over the elapsed time (t− ti). Further, Equation 10 can be transformed from strain space
to time space using the definition of shear rate in Equation 4, which implies δγi = γ̇iδti:

σ(t) =
∑
i

G(t− ti)γ̇iδti. (11)

In the case of a smooth strain history, Equation 11 can be reformulated as an integral over all previous
strains.

σ(t) =

∫ t

−∞
G(t− t′)γ̇i(t′)dt′. (12)

We integrate from t = −∞ as we must account for all past strains to ensure that the whole history is accounted
for. Thus, the stress in a material is the result of all past deformations and the memory of each prior deformation
decays as the relaxation modulus decays, which is on the time scale of the relaxation time of the material.

5 Oscillatory dynamic mechanical analysis

One of the simplest and most common techniques to quantify the viscoelasticity of polymeric materials is
oscillatory dynamic mechanical analysis, often using a shear rheometer. In this approach, a sinusoidal strain
with an angular frequency ω is applied to the sample:

γ(t) = γ0 sin(ωt). (13)

Here, γ0 is the shear strain amplitude. The standard geometries for a shear rheometer are parallel plates, cone
and plate, or Couette cells. A major advantage of the oscillatory approach, is that it can easily probe the
viscoelastic response of the material on different time scales (τ ∝ 1

ω ) by varying the angular frequency ω.
If a perfectly elastic solid is investigated in oscillatory shear, then the stress in the sample can be related to

the strain using Hooke’s law:

σ(t) = Gγ(t) = Gγ0 sin(ωt). (14)

Here, the stress is perfectly in-phase with the deformation.
In contrast, if a Newtonian liquid is investigated in oscillatory shear, the stress in the sample can be related

to the shear rate using Newton’s law:

σ(t) = η
dγ(t)

dt
= ηγ0ω cos(ωt) = ηγ0ω sin

(
ωt+

π

2

)
. (15)

Here, the stress oscillates with the same frequency ω but it is out-of-phase by π
2 .

The mechanical response of a viscoelastic material is between that of a Hookean solid and a Newtonian
liquid. The linear stress response of a viscoelastic material will also oscillate at the frequency of the applied
strain, but the stress is phase-shifted from the strain by a phase angle δ:

σ(t) = σ0 sin(ωt+ δ). (16)

The phase angle δ can take any value in the range 0 ≤ δ ≤ π
2 [for a Hookean solid δ = 0 and for a Newtonian

liquid δ = π
2 ] and can depend on the applied frequency. Thus, we can decompose the stress response into two

orthogonal components that each osciallate with the frequency ω, one component that is in-phase δ = 0 and
one component that is out-of-phase δ = π

2 :
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σ(t) = γ0[G′(ω) sin(ωt) +G′′(ω) cos(ωt)]. (17)

We define G′(ω) as the storage modulus or elastic modulus and it is a measure of the elastic response of
the material, or how much of the strain energy is stored by the material. We define G′′(ω) as the loss modulus
or viscous modulus and it is a measure of the viscous response of the material, or how much of the strain
energy is dissipated by the material. As indicated by the formulation, G′(ω) and G′′(ω) both depend on the
frequency of the oscillatory shear.

Equation 17 can be related to Equation 16 using the trigonometric identity for the sine of a sum:

sin(ωt+ δ) = cos δ sin(ωt) + sin δ cos(ωt). (18)

Therefore, we can relate G′ and G′′ to the phase angle δ and the modulus amplitude σ0

γ0
for each frequency ω:

G′ =
σ0
γ0

cos δ, (19)

G′′ =
σ0
γ0

sin δ. (20)

We can then relate the tangent of the phase angle δ to the ratio of G′′ to G′:

tan δ =
G′′

G′
. (21)

We define tan δ as the loss tangent of the material. In general, when tan δ < 1 we consider the material to be
acting as a viscoelastic solid at that frequency and when tan δ > 1 we consider the material to be acting as a
viscoelastic liquid at that frequency. In total, oscillatory shear is a powerful tool to investigate the viscoelastic
properties of networks and gels and is used extensively in current research.
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