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'
~N this review I should like to discuss the progress

~ ~ which has been made during the 'past few years to-
ward an understanding of the collective character of
certain of the characteristic energy losses observed
when fast electrons are scattered by thin solid films. ,

Let me begin by defining what I mean by a collective,
as compared. to an individual particle, energy loss.
We shall be interested in energy transfers of the order
of 10 to 25 ev from the incident electron to the solid.
For this energy region, the energy will, except in certain
special cases, be absorbed by the valence electrons in
the solid (electrons outside the closed atomic shells).
On an individual particle picture, which certainly ob-
tains if the inQuence of the Coulomb interaction between
the valence electrons is slight, we would characterize
the excitation spectrum of the valence electrons by a set
of one particle energy differences, Ace„o,corresponding to
electronic transitions within the same band, or from
one band to another. Where such transitions are excited
by an incident fast charged particle, we are dealing with
energy transfer to a single valence electron, in other
words, an individual particle energy loss.

However, in many cases the Coulomb interaction
between the valence electrons markedly inQuences the
excitation spectrum of the system. The valence elec-
trons in the solid, as a result of this interaction, are
capable of carrying out collective oscillations at a high
frequency which may diRer substantially from the
majority of the co 0 and depends, approximately, only
on the electron charge, mass, and density in the solid.
When a fast charged particle excites such collective
oscillations, we are dealing with energy transfer to a
number of electrons moving cooperatively in conse-
quence of their mutual interaction, and we call the
associated energy loss collective. The valence electron
collective oscillations resemble closely the electronic
plasma oscillations observed in gaseous discharges. We
introduce the term "plasmon" to describe the quantum
of elementary excitation associated with this high-
frequency collective motion. Under circumstances that
we might expect plasmons to exist as well-defined en-
tities, the energy of a plasmon is in the neighborhood of
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where e is the valence electron density and m is the
free electron mass. Our study of collective energy losses
becomes then a study of plasmon excitation in solids.

The introduction of a new elementary excitation
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requires, I believe, rather more justification in solid
state physics than might be asked for in "curious par-
ticle" physics. In this review„ I shall try to summarize
the evidence, both experimental and theoretical, which
points to the existence of the plasmon as a well-defined
entity in nearly all solids. We shall see that experi-
ments dealing with the characteristic energy losses
provide us with the following information about
plasmons in solids:

(1) Plasmon energy, derived from the magnitudes of
the observed losses.

(2) Plasmon lifetime, derived from the width of the
observed losses.

(3) Cross section for production of a plasmon by a
fast charged particle, derived from the variation in
observed losses with foil thickness and incident particle
energy.

(4) Plasmon dispersion (the dependence of the
plasmon energy on wavelength) derived from the de-
pendence of energy loss on scattering angle.

(5) The minimum wavelength and maximum energy
beyond which a plasmon cannot be regarded as a well-
defined mode of excitation of the system, derived from
the maximum scattering angle at which plasmon excita-
tion is observed.

The following two sections are devoted to a development
of the necessary theoretical background in terms of
which we can evaluate the foregoing experimental in-
formation. In Sec. II we are principally concerned with
the plasmon dispersion relation in solids, that is, with
the energy we might expect a plasmon to possess in a
given solid. This dispersion relation may be derived
microscopically from a study of the equations of
motion of the electrons or from a Hamiltonian formula-
tion of the problem; it may also be obtained from a
phenomenological macroscopic treatment of the solid
in terms of an eRective dielectric constant. We prefer
to adopt the microscopic approach here because there
are certain ambiguities in the use of the macroscopic
dielectric constant which may only be resolved by
actually carrying through the microscopic treatment.
In Sec. III we consider the mechanism by which a
plasmon is excited by a fast charged particle. We also
discuss the way in which plasmon excitation may be
distinguished from individual electronic excitation.

In Secs. IV and V we compare our theoretical predic-
tions with the experimental observations concerning
plasmons in solids. In Sec. VI we summarize the present
situation and consider some of the desirable future lines
of investigation in this field.

4
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I.et us consider the interaction of an electron of
momentum Pp, position Rp, with the valence electrons
in a solid. We may take for our system Hamiltonian,

pP
H=Q +V(r;)+2pre' Q

i 2m ~jk

es~. (x;—x;)

Pp2 4me2

+ +.g eik (Rp—xi) r (I)2' sk

so that the interaction between the external particle
and the electron system may be written as

4+e2
p eik Rp (3)

The pI, describe the fluctuations in the electron density
p(x) about the average value pp=zz, and because of (3)
furnish the "natural" variable for us to study in the
energy loss problem.

The pl, also turn out to be the natural variable to use
in studying the possible collective properties of a dense
electron gas. ' Such an investigation was first carried
out for the free electron gas model of the solid, in which
V(r;) is assumed to be a constant. It is instructive to
consider this model in some detail, as certain of the
basic requirements for collective behavior, and hence
plasmon excitation, already appear in this simplified
problem. In BP III it is shown that the pI, satisfy the
following operator equation of motion,

8'pk (ir y Ak') '
+rer Pk=Z~
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We carry out our Fourier expansions in a box of unit volume.' D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952);Phys. Rev.
92, 608 (1953), hereafter referred to as BP II and BP III.

The first term represents the electronic kinetic energy,
the second the potential of the ion cores, the third the
Coulomb interaction between the valence electrons.
We are assuming that the influence of the core electrons
on the valence electrons may be represented by a poten-
tial. (We return later to the cases in which this assump-
tion does not apply. ) The last two terms in (I) describe
the kinetic energy of the external particle and its Cou-
lomb interaction with the valence electrons. We see
that the response of the valence electrons to the ex-
ternal particle depends only on the valence electron
density fluctuation p&. For we have

pk= J~dxp(x)e '"'*= I dx p 8(x—x,)e '"'
'b

(2)

co„is the plasma frequency and is given by

(4przze'q '*

zzz )
Clearly to the extent that the terms on the right-hand
side of (4) may be neglected, the density fluctuations
display oscillatory behavior at a frequency co~, and we
may expect the collective properties of the system to
determine the energy loss spectrum of an incident
charged particle. The oscillations are the analog of the
classical longitudinal plasma oscillations found in a
gaseous discharge. ' In this case, because the oscillations
take place at very high frequencies (App„))AT), we must
consider the quantum character of the oscillation spec-
trum. We introduce the plasmon, of energy AM„, as our
quantum of elementary excitation for the collective
oscillations of the valence electrons. The valence elec-
tron density in solids ranges from 1022 to 10'4, so
that the corresponding plasmon energy Pun„varies
from 4 ev to 30 ev. The energy required to excite a
plasmon is of course far greater than that available
thermally. For a given metal the plasmon energy also
turns out to be greater than the kinetic energy of any
individual conduction electron. As a result, we may
only observe plasmon excitation by supplying energy
from without to the valence electron system (in amounts
greater than A&p„), and this is what occurs when a fast
charged particle passes through the solid.

The first term on the right-hand side of (4) represents
the eGect of the electron kinetic energy on the plasma
oscillations. Following BP III, we may estimate its
importance by averaging over electron momenta to
obtain, approximately,

(ir p; Ak')' —a *;
& ziz 2zzz&
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m2 4'
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where vp is the velocity of an electron at the top of the
Fermi distribution of our electron gas. For our free
electron solid, k, ' is of the order of the average elec-
tron spacing. For values of k which are small compared
to k„the plasmons will be little affected by the elec-
tronic kinetic energy, and we may expect the system to
behave collectively. On the other hand, for values of k
which are large compared to k„the system will no
longer behave collectively, the concept of the plasmon
as an independent entity is no longer appropriate, and
the density fluctuations and elementary excitations are
those associated with a collection of individual electrons. '

The second term on the right-hand side of (4) repre-

' L. Tonks and L Langmuir, Phys. Rev. N, 195 (1929).

The term becomes comparable in importance with the
term arising from the Coulomb interactions, co„2pA, for
a value of k such that
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sents the influence of nonlinear interactions between the
density fluctuations on the equation of motion of the
p~. Because it is a nonlinear term, and the p~ for long
wavelengths are reduced by Coulomb correlations, 4 we
might expect it to be small, but a detailed study of its
influence on the motion of the p~ is dificult to carry out
within this framework. It is shown in Bp III (where the
entire problem is studied in the framework of a Hamil-
tonian formulation) that in fact the nonlinear term will

always be considerably less important than the kinetic
energy term for all k&0.. Hence, the considerations of
the preceding paragraph are sufhcient to classify the
collective vs individual particle behavior of the free
electron gas.

The free electron model is a fairly good approximation
for the behavior of a solid if we are dealing with a metal
and we are concerned only with conduction electron
transitions within a given band. If we wish to consider
nonmetals, or the influence of transitions between
diferent bands on the plasmon behavior, we must take
into account the in6uence of V(r;) in Eq. (1) on the
electron motion. Such a treatment was first carried out
by Mott, ' who used a semiclassical approach to treat
the plasma oscillation as a polarization wave in the
solid. We here given an equivalent discussion, ' which
is somewhat more closely related to the above con-
siderations.

As we have already remarked, we are interested in
the matrix elements of pI, between di8erent states of the
valence electron system. Let us describe these states
by the eigenstates of

rd o=(E —Eo)/k is the frequency difference between
states 0 and n for the valence electron system. Thus,
for a metal, co 0 corresponds to the energy di6'erence for
an electron making a transition within the same band,
or from the conduction band to a higher band; for a
semiconductor or insulator it will correspond to an
electron going from the valence to the conduction or
higher band. Once again we assume that the nonlinear
term on the right-hand side of (8) may be neglected.
The criterion that we get collective behavior is then
that for the important matrix elements (ps) „o,ro„'»oo o'.
In these circumstances the Coulomb interaction between
the electrons, as represented by co„',will dominate the
individual particle behavior of the electrons, as repre-
sented by the co„o,and so it is perhaps not surprising
that the p& will continue to oscillate at a frequency
near rd~. (In other words, for such situations the most
important force an electron feels is that due to the other
electrons, rather than that due to the periodic field of the
ions. ) For the nearly free conduction electrons of a
metal, the criterion k«k, is a special case of co„p«a)&,
since the free electron case we discussed describes well
the influence of transitions within the conduction band
on the collective behavior.

We can obtain a better idea of the influence of the
individual particle motion on the collective behavior
if we split up pI, into a collective part and an individual
particle part, as was done in BP III. For the free elec-
tron gas this may be done by 6nding an operator which,
within the linear approximation, has a pure oscillatory
equation of motion. One then finds that the oscillatory
part of pj, is given by

Bo=g
i 2m

+l'( '). e
—ik xs

'—[(k p;/I) —(Ak'/2m)]'

Thus we have LIOC„=E„%'„for the valence electron
system. Because thermal energies are so small compared
to the energy transfers in which we are interested, we

can regard the valence electron system as being in its
ground state before interaction with the fast charged
particle takes place. We then wish to calculate the
matrix element (pi) o between the ground state and all

states e which di6er from the ground state by momen-

tum Ak. By a study of the equation of motion of (p1,) o,

we find, in analogy to (4),

~ pa—+re„'ps ———~.o'(ps). o

nO
4me'

k.k'(p~ ops) o (8)
~'~s m(k')s

4 Thus, for long wavelengths the pq behave like a collection of
oscillators (in the absence of the nonlinear term}. In this approxi-
mation, the mean square fluctuation of the pf, is determined by
the zero-point energy of the plasmons and corresponds to (ps')Ar

~(kk~/4m~„}A„Nas compared to the free electron value of N.
SN. I. Mott, Proceedings of the Tenth Solvay Congress,

Bruxelles (1954}.' P. Nozieres and D. Pines, Phys. Rev. (to be published), here-
after referred to as NP.

while the corresponding dispersion relation is

4n-e' 1
1=

mrs ' [ro —(k p;/fl$) ]'—(l's'k'/4m')
(10)

(12)

which for long wavelengths becomes

~2 ~ 2+k2(e2) + (irgsk4/4~2) (11)
The correction terms in (10) represent the change in
the dispersion relation of the plasmons brought about
by the coupling between the free electrons and the free
plasmons, as represented by the first term on the right-
hand side of (4). We see from (9) and (11) that for long
wavelengths (k((k.), ps= qs, so that the density fluctua-
tions are almost completely collective in character.
For k»k„onthe other hand, qI,«pl„and the pI, describe
a collection of individual particles.

The analogous procedure for the case of valence elec-
trons in a solid is given in NP. The collective compo-
nent of the matrix element (ps) o is found to be

GO~

(qs).o= (pa).o,
GP —Go~p
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while the dispersion relation becomes

42re' 2&o o~ (P2) o)'
1=

Ak' oP—(o o'
(13)

NP. The basic Hamiltonian for the valence electron
system in (1) may be rewritten as follows:

p.2 2' 8
H=Q +V(r,)+ Q e'a&*' *~&

2m 2, , 7;k)kc k~

We may write the dispersion relation (13) in the form

4m.e' no

(14)

If we take the ground and excited states as being repre-
sented by Slater determinants of one-electron wave
function 22„(x;),the above relations become

4xe'
(16)

fS «CO —
GOfrlf,

where f„Kis, in the long wavelength limit,

28$ (' 2

fzK &O+K dxrP~+K (X)x&O~(X)
3A

f„Kis the one-electron oscillator strength for a transi-
tion from state x to state v+K, where E is a reciprocal
lattice vector, and co,~ is the corresponding one-electron
frequency diBerence. For IF=0 (intra-band transitions),
we have

2N &)2E(«) 222

«0

A BK 5$

where E(s) is the one-electron energy, and 222* is defined
through (18). The dispersion relation in the form (16)
is identical with that derived by Mott. '

The principal problem with the derivation of (14)
or (16) is that it is difficult to estimate the validity
of the linear approximation in this formulation. For
instance, one might wonder whether a Lorentz polariza-
tion correction (which would only appear through the
neglected terms), should in some cases be applied.
We are also not able to treat simply the damping of
the plasma oscillations by the individual electrons (it
is assumed small). For these reasons it is desirable to
carry out a treatment of the plasmon dispersion and
absorption in the framework of a Hamiltonian formula-
tion in which these problems may be studied.

The required treatment for the case of free electrons
may be found in BP III. The generalization to valence
electrons in a solid was first carried out by Kanazawa, '
and has been independently studied by Adams. ' We
here describe briefly an analogous treatment given in

~ H. Kanazawa, Progr. Theoret. Phys. 13, 227 (1955).' E. N. Adams, Phys. Rev. 98, 947 (1955).

m & a —M&0

where f„pis a generalized oscillator strength for the
transition of our electron system from the ground state
to the excited state e, and is

2'
f.o= ~.o ) (p.).o )'.

Ak'

&o,'Qa*Q2+2- +
k(kc 2 2

(42re') & (ir p; Ak')
[Q„elk~ xr

2&2. ( ks ) E 222 2222)

22re2 it I
+ P —QsQi exp[2(k+1) x;], (19)

*~«& m Ikl I &I

provided we impose a set of supplementary conditions
on our extended system wave function,

(
] Ps i] —

~
p2 (4=0 (k(k,). (20)

& k2)

oo p, (21)
GP 077t, O

where co„ois as defined before. "
' In deriving (21) we have neglected the influence of plasmon

damping on the dispersion relation. Such a damping correction
should not be appgqqjgblc for cases in which plasmon excitation
can be observed,

In (19) and (20) we have introduced 22'= kp/62r2

plasmon degrees of freedom in the coordinates Q2 and
momenta pk. The long-range part of the Coulomb inter-
action between the valence electrons has been re-
described in terms of the plasmons. The third term in
(19) represents a short-range screened valence electron
interaction, the fourth and fifth the field energy of the
plasmons of frequency co~, and the sixth the linear
plasmon-electron interaction. The remaining new term
is the nonlinear plasmon electron interaction.

The linear plasmon-electron interaction gives rise to
two eGects, a change in the plasmon frequency and an
eAective electron-electron interaction. It also gives
rise to the absorption of a plasmon by the electron
system. The shift in the plasmon spectrum due to this
interaction is studied by carrying out a canonical trans-
formation to eliminate the interaction to first order.
The desired transformation is simply found and
the results easily obtained if one works in a mixed
representation, in which the plasmon operators are
specified in a representation in which Ho=+' pp/2222

+V(r~) is diagonal. One consequence of the trans-
formation is that the plasmon variables no longer ap-
pear in the transformed supplementary condition. Thus
one Ands a set of e' independent plasmons, of maximum
momentum k„anda collection of 3e electrons which are
somewhat constrained by the transformed subsidiary
condition. The plasmon dispersion relation becomes

(lr y- Aks)
~e"*'

42re2 ' ( 222 2222] o
~2 —~ 2+

Ak'



i88 DAVI D P I NE5

If we describe the ground and excited state of the
valence electrons by means of Slater determinants, we
obtain the results of Kanazawa. 7 The equivalence of
(21) with (14) may be established by making use of
the identit,

(k p; Ak2)

' ( 222 2mi .o

and the generalized f sum rule,

P f„p 22,
——

so that thus far nothing new appears.
However, the Hamiltonian formulation permits the

study of the terms which have been neglected in the
derivation of (14) or (21). These are the nonlinear
plasmon-electron interaction and the short-range elec-
tron-electron interaction. Close examination shows that
the nonlinear plasmon-electron interaction gives rise
to corrections to the plasmon dispersion relation which
are analogous to the local field polarization corrections
introduced by Lorentz. Furthermore, where the linear
plasmon-electron interaction may be treated as a com-
paratively small perturbation (M„&(M~),it is straight-
forward to show that the nonlinear interaction and
hence the local field corrections are negligible. This is
perhaps not surprising since the use of a local field
correction implies that a given electron may be re-
garded as localized. in a given region in the crystal for
the phenomenon under consideration and hence that
its eGective binding frequency co„ois large compared to
all other frequencies of interest. When or„)co„f),this
situation of course does not apply.

The short-range interaction between the electrons
influences the plasmon spectrum because the electrons
are coupled to the plasmons through the linear inter-
action term, and with each other through their screened
Coulomb interaction. When we eliminate the linear
plasmon-electron interaction, we thus automatically
introduce a plasmon-electron-electron interaction term
which can act to shift the plasmon frequency and
absorb an excited plasmon. It is found that for co„o(&or~,
the shift in frequency is approximately the same as
that for a gas of free electrons, and is

(hM)' —O'E (22)

where E, ,&" is the exchange energy for the short-
range interaction,

&ik (r&—r~')

1&s. jp

This correction is usually rather smaller than the cor-
rection terms already indicated in (11).

There is a very close connection between the inhuence
of the valence electrons on the plasmons and the optical
properties of the solid. This comes about because the
Hamiltonian which describes the interaction of a
transverse electromagnetic wave with the valence elec-

trons is essentially identical in form with those parts of
(19) describing the plasmon field and its interaction
with the electrons. The difkrences lie in that the photon
is a transverse wave, and the free photon dispersiori
relation is

M '=C2k2+M '
Thus, as is shown in NP, the modified frequency co»
for a photon of polarization e» is

4m''
2= C2$2+M 2+

nl2 n

2 ILK ".p'c'" *'3.0 I'

M„G. (23)
CO 6)~p

In the long wavelength limit (23) becomes

4xe'
M„2 C2$2+M 2+

«z«x 2

(24)
8$ «& CO G)«~

We make the connection with the usual optical con-
stants by writing

M2& t( M)= C k, (25)

where e(M) is the dielectric constant for a frequency M.

One then finds the familiar expression for 2(M),

4me'
E(M) = 1

m «oP —co«~
(26)

4n e' f„x 42re2 f;+
2' "IC M MqX 222 & M M~

(27)

In NP a Hamiltonian formulation of the problem is
given. The core electrons are treated on an equal basis
with the valence electrons. It is found necessary to

J. Hubbard, Proc. Phys. Soc. (London) A68, 441 (1955).
"H. Frohlich and H. Pelzer, Proc. Phys. Soc. (London) A68,

525 (1955).' U. Pano, Phys. Rev. (to be published). I should like to thank
Dr. Pano for sending me a preprint of his paper.

Thus a knowledge of the zero's of 2(M) would enable us
to determine the plasmon dispersion relation from the
optical data. This is, in fact, possible only for the alkali
metals; the plasmon energies so obtained are discussed
in the following section. The fact that the plasmon dis-
persion relation is equivalent to the condition «(M) =0
seems first to have been noticed by Mott. ' The close
relationship between the optical and plasma properties
of a solid has been emphasized by Hubbard, ' Frohlich
and Pelzer, "and Fano."

Thus far we have assumed that the inQuence of the
core electrons on the plasmon behavior may be de-
scribed by the potential V(r,). This is not generally
correct, since such a scheme does not allow for the
polarization of the core by the plasmon fields. The
inAuence of the core on the plasmon dispersion relation
may be simply treated in the semiclassical approach of
Mott, in which the core electrons are described by a
set of oscillators of frequency M; and strength f;. The
result is
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This lifetime has the expected dependence on plasmon
wavelength. Long wavelength plasmons have an ex-
tremely long lifetime, and the lifetime decreases as
the square of the wavelength.

The linear plasmon-electron interaction in an actual
solid provides a far more eKcient absorption mechanism.
The lifetime due to this mechanism (absorption of a
plasmon by an electron which undergoes a band-band
transition) was 6rst calculated by Wolff. ip It may be
simply expressed in terms of the optical constants e
and k, and is

(29)1/r 2= 2ik(p, .

An equivalent result has been obtained by Kanezawa
and by NP. Again optical experiments do not furnish
us with values for m and k in the desired frequency
range. We may generally expect, however, that since

1/r2 is proportional to the oscillator strengths and
density of transitions of frequencies cop„in the immediate
neighborhood of cv„,wherever there is a large shift in
the plasmon energy from the free electron value there
should be a correspondingly large broadening of the
observed energy loss.

Let us now consider the production of a plasmon

by a fast charged particle. This was 6rst calculated in
BP II, where a semiclassical approach based on the
density Quctuation method was used to calculate the
mean free path ) for single plasmon production. The
energy loss to the plasmons was treated by methods
analogous to those used for the Cerenkov eGect; the
phenomena are quite similar in that energy and
momentum conserving processes induced by the linear
field-particle interaction can take place. A quantum
treatment along these lines may be found in P IV."A
macroscopic treatment using an effective dielectric
constant has been given by Hubbard' and Frohlich and
Pelzer. "We here wish to sketch a somewhat diGerent

'~ P. Wolff, Phys. Rev. 92, 18 (1953).
"D. Pines, Phys. Rev. 92, 626 (1953), hereafter referred to

as P IV.

modify somewhat the approach described above; how-

ever, the resultant plasmon dispersion relation is found
to be identical with (27).

The damping of a plasma wave in a solid principally
occurs via two mechanisms; the short-range interaction
between the electrons and the linear plasmon-electron
interaction. For the free electron gas only the first
mechanism is available, since energy and momentum
conserving transitions via the linear plasmon-electron
intervaction are not possible. The plasmon lifetime due
to the short-range electron-electron collisions is calcu-
lated by NP, and is found to be approximately

1 Aco

(i2'k'/2222)

(42e2) &

~

Pe'2Rp
Ek2&

(31)

where P'I, is the momentum of a plasmon of energy
hip and wave vector k. If we now treat the effect of this
interaction on the fast charged particle by 6rst-order
perturbation theory, we obtain, as the probability per
unit time that the particle produces a plasmon of wave
vector k and energy hip and is scattered into an element
of solid angle dQ,

dQ (dI p

2m'ap Ak'
(32)

where ap is the Bohr radius. In Fig. 1 we show the con-
ditions imposed by the conservation of momentum. It
may readily be verified that

$2/2 —(gp)2+p 2tl2 p 2(g2+y 2)
where

Ap 1 Sip
z=

Ip 2Ep

(33)

(34)

and Ep is the incident fast particle energy (Ep))~).
Using (32) and (33) it may easily be shown that the

di6erential cross section per valence electron for
scattering through an angle 8 is

dQ
(a)dn=

22r22a 2 82+PE2
(35)

5k

Pro. 1. Energy and momentum
conservation for a fast electron
which excites a plasmon.

4 R. A. I'errell, Phys. Rev. 101, 554 (1956).
'~ There is also a screened electron-electron interaction term

which we neglect. See Eq. (42) of P IV.

derivation of the plasmon production process which is
similar to that used by Ferrell'4; it enables us to con-
sider the angular distribution of the electrons which
have excited plasmons, and it yields results identical
with those found in BP II and P IV.

The interaction between the fast charged particle
and the valence electrons is specified by (3). Consider
now the long wavelength part of this interaction,

lee'
Ii„eikRp. (30)

a&I.

When we carry out the canonical transformations
which eliminate the electron-plasmon interaction Land
lead to the plasmon dispersion relation (23)$ we find
that (30) is transformed to"
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FIG. 2. Schematic diagram
showing allowed low momen-
tum transfer band-band transi-
tions. In order that a sharp
loss line appear a group of
transitions, such as those indi-
cated by the shading, must be
markedly favored.

The maximum scattering angle 8, is given by

a,-(Ak./P, ) (36)

and we have 8~&&8,&(1 for typical experimental
situations in the scattering of kilovolt electrons. We
then find, on integrating (35) over solid angle, a cross
section for plasmon production which is

K'=
2~+p m A~ jQ'

(39)

If we are interested in an energy loss of width I' about
a given AE, we should include in our expression (32)
all band-band transitions which could contribute in
this energy region. We then hand

expect to observe a fairly sharp energy loss (width 1'

small compared to loss value hE) is if the transition
probability varies rather sharply within the band, and
is large for only a comparatively small number of the
possible band-band transitions. If we neglect the
Coulomb interaction between the electrons, we may
calculate quite simply the probability per unit time
that the fast incident particle give up energy DE=Aor„p
to a single valence electron. We obtain

dQ 4me' f pA Pp

Ao) k,Pp
0-— ln—= ln

RGp 8E 2ÃgpEp 1Ãco
(37)

dQ (A(oy) (n«p Pro~

2prap (AEJ ( n ) Ak'
(40)

This corresponds to a mean free path for the production
of a plasmon A, given by

(Epq 1
~=2ap) —

)

(Ap~) ln (k,Pp/nsco)
(3g)

Before going on to a consideration of the experi-
mental results on plasmon production it is useful to
consider briefly the alternative possibility that a given
energy loss might be of an individual particle character
(that is, correspond to a band-band transition for an
individual valence electron). Suppose we consider a
metal and assume that the observed energy loss corre-
sponds to excitation of an electron from the conduction
band to a higher band. If we are concerned with a rela-
tively low-energy transition ((15 ev, say, ) then we
will be concerned with excitation to the nearest band,
which will in general have a rather different shape. The
situation in the nearly free electron approximation is
shown in Fig. 2. We see that the only way we could

For the excitation of a j.5-ev plasmon by a 10-kv elec-
tron we And a mean free path of 250 A for typical
values of k, encountered in metals. The maximum
scattering angles 6, expected are of the other of a few
hundredths of a radian.

We further remark that the probability of two plas-
mon excitation by an incident fast charged particle is so
small that this possibility may be neglected in consider-
ing the scattering of fast electrons by thin 6lms. What
one expects, instead, is repetition of the single plasmon
production act. Thus the probability for an electron to
excite lV plasmons in passing through a foil of thickness [
is given by the Poisson distribution

1
P~(t) =

]
—

[ e
—'~".

Z!L),)

where fA„ is the average oscillator strength for the
transition AE and nA, /n is the relative number of elec-
tons in the band which contribute appreciably to the
transition.

On comparing (40) with (32) we see that for Api~=AE
=Ace the probability for energy transfer to a single
valence electron is reduced over that for plasmon
production by a factor

Av

Now fA, is generally somewhat less than unity, and as
we have seen, nA„/n must be small compared to unity
if we are to observe a relatively sharp energy loss.
Hence we expect plasmon production to dominate
band-band transitions for momentum transfer less
than k, . In NP it is shown that this conclusion is
strengthened if one takes into account Coulomb correla-
tions between the valence electrons. For the correlations
act to reduce the individual electron part of the matrix
element (pp) „pby a factor of (~„p/~„)'for M p(pp~. The
expression (40) then becomes

dQ (AEp'(n«y Pppp„
corr Ay

2map (Api„) ( n ) Ak'
(41)

(6E) n«
I
—f".

&a „) (42)

This conclusion is not surprising when we recall that
the stopping power of the valence electrons depends
only on a sum rule and is independent of the mechanism

so that we expect the cross section for energy transfer
AE&Aco„ to an individual electron to be reduced over
that for plasmon excitation by a factor
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of the energy transfer. "' The effect of the Coulomb
correlations is to enhance considerably the probability
for an energy transfer Ace to the valence electron as-
sembly. The correlations must then at the same time
act to reduce the probability for individual particle
transitions, in order to preserve the sum rule for the
stopping power. In (42) we see the combined effect
of the enhancement at the plasmon energy and the
corresponding inhibition of the low energy band-band
transition.

We now turn to a consideration of the experimental
evidence for plasmon excitation in solids. "It was clear
from the pioneer experiments of Ruthemann" and
Lang'8 that two kinds of situations prevail in the
characteristic loss spectrum of a thin solid film. For
Be and Al, they observed several comparatively narrow
loss lines, in multiples of a basic loss quantum, 19 ev
for Be, ~15 ev for Al. On the other hand, for Cu and

Ag they found only a single loss line, which was con-
siderably broader than the lines for Be and Al, and
occurred at ~20 ev for Cu and 23 ev for Ag.

Let us compare these values with the free electron
plasmon quantum (calculated assuming the valence
electrons are free). We find good agreement for Be
and Al, with plasmon energies of 19 ev and 16 ev,
respectively. On the other hand, for Cu and Ag the
free electron plasmon energies are 11 ev and 9 ev.
Thus, if we seek to explain both types of lines as
plasmon excitation, we must understand why for Be
and Al the valence electrons behave as if free (as far as
plasmon behavior is concerned) and several loss lines

are observed, whereas for Cu and Ag the plasmon

energy is considerably higher than the free electron
value, and only a single loss line is observed. The
answer to the first puzzle vras provided by Mott, ' who

showed that if the valence electrons are weakly bound,
and the core electrons are strongly bound (with respect
to the free electron plasmon energy Ace„),the solid state
environment would not greatly affect the plasmon

energy. The answer to the second question was pro-
vided by Herring" and Wolff, ~ who showed that the
coupling of the plasmons to the core electrons in Cu and

Ag would be expected to broaden the plasma resonance
and increase the plasmon energy substantially.

" Precisely because the stopping power is mechanism insensi-
tive, we will not enter upon a detailed discussion of its calculation
here. Historically, the first utilization of the plasma aspects of
the electron gas in metal was made by Kronig and Korringa
LPhysica 10, 406, 800 (1943)j in a consideration of the influence
of electron interaction on the stopping power of a metal. The rela-
tive contribution of the individual electrons and the plasmons to
the stopping power is discussed in P IV.

~6 The material in this section is largely drawn from NP and an
article by D. Pines in Solid State I'hysics (Academic Press, Inc. ,
New York, 1955), Vol. 1."G. Ruthemann, Naturwissenschaften 29, 648 (1941);30, 145
(1942); Am. Physik (6) 2, 113 (1938).

's W. Lang, Optik 3, 233 (1948).
C. Herring (private communication).

We shall see that solids generally fall into the one
category or the other, insofar as their characteristic
energy loss spectra are concerned. Where the loss line
is comparatively narrow, it is found at nearly the free
electron plasmon energy, and usually several loss lines
are observed. On the other hand, where the loss line
is broad usually only a single line is observed, at an
energy considerably displaced from the free valence
electron plasmon energy.

Consider the case of weak valence and strong core
binding, that is m„~'&(oP((co,' for those transitions
co„~,co; for which the oscillator strength is appreciable.
In this case we may approximate (16) by

4sre' f„rc 4sre' f;1—
yg aX (g yg i

(43)

We use the sum rule gx f.rr 1, and ——introduce the
static core dielectric constant,

We then obtain

4xe'
e,=1+

' i

M~/02 2f

(44)

(45)

for our expected plasmon dispersion relation. In these
circumstances ~, will be of order unity, since we have
assumed that the core electrons are tightly bound.
Since both Al and Be are metals for which we have
weak valence and strong core binding, it is thus not
surprising that there is agreement between the free
electron plasmon value and the experimentally ob-
served loss line. Such agreement encourages one to
attempt a similar comparison for other solids.

In comparing our theoretical value (45) for the
plasmon loss line with experiment, we must take into
account the fact that for many solids rather different

energy loss spectra have been observed by different
experimenters. The experimental situation with regard
to the characteristic energy loss spectra has been re-
viewed by Marton ef, al." and has been discussed by
Dr. Marton at this conference, "so we shall not go into
details on the possible reasons for such discrepancies
here. Among these are the difhculties with sample

purity in dealing with 61ms a few hundred A thick, and
possible damage to the films by impurity deposit in
the course of electron bombardment. ~ Further, differ-

ences in 61m thickness, bombarding energy, and angular
aperture of the spectral analyzer would, according to
(35) and (38), cause a difference in the number of

plasmon lines observed.
In Fig. 3 and Fig. 4 we present a partial summary of

the characteristic energy losses thus far observed. We

~' Marton, Leder, and Mendlowitz, Advances in Electronics and
E/ectron Physics (Academic Press, Inc. , New York, 1955), Vol. 7.

2' L. Marton, Proceedings of Maryland Conference on Electron
Physics.

ss D. Gabor and G. W. Jull, Nature 175, /18 (1955).
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FIG. 3. Fzo. 4.

Fedos. 3 and 4. Experimental results on characteristic energy losses Ltaken from Solid State Physscs (Academic Press, Inc. , New York,
1955)), Vol. 1, p. 432. The energy losses are in ev. The code numbers refer to the work of the following investigators: (1) Ruthemann";
{2)Langton; (3) G. Mollenstedt, Optik 5, 499 (1949); (4) Marton and Leder '; (5) W. Kleinn, Optik 11, 226 (1954); (6) W. Watanabe,
J. Phys. Soc. Japan 9, 1035 (1954); (7) Gabor and Jull."

have attempted to identify the experimental plasmon
loss on the basis of the following criteria:

(1) Where a solid has been investigated in several
difI'erent experiments, we consider only those loss lines
which have been found by aB observers.

(2) Either the loss appears through a series of equally
spaced lines or only one rather broad line is found under
the circumstances which would have precluded ob-
serving the multiple losses.

(3) In cases where the relative intensity of the
diferent loss lines is given, the plasmon losses are
identified with the most prominent lines in the spectrum.

(4) Where several different values for a given loss
line have been reported, we take an uncritical average
of the various values in arriving at an experimental
loss value.

We have been led, in part, to these criteria by the con-
siderations of the preceding section which indicate that
the plasmon lines should be the most prominent lines
in the loss spectrum.

In Table I we compare theory and experiment for
those solids for which we expect the criteria of weak
valence and strong core binding to be well satisfied.
Ace is the calculated plasmon energy according to (45)
and DE,b, is our identification of the experimental loss
which we should expect to correspond to plasmon
excitation according to the discussion given in the

preceding paragraph. We have kept only two significant
figures in AE,b, and A~ because neither quantity
can be regarded as known to any greater accuracy.
We see that the agreement is really quite good. Further-
more, where the discrepancy is greatest, for 8 and C,
it is in a direction which we can understand. For these
substances, the valence electrons are comparatively
tightly bound, so that we might expect that band-band
transitions of quite high energy could be important in
determining plasmon behavior. H the energy of such
transitions Ace„~ is larger than Ace~, then we would,
according to (16), expect the plasmon energy to be
lowered, which it appears to be. A somewhat less precise
way of putting this is to say that to a certain extent
not all the valence electrons are free to take part in
plasmon excitation, and so we observed a reduced
plasmon energy.

We might also expect that the alkali metals fall into
the category of weak valence and strong core binding.
Here it is rather dificult to be confident of the informa-
tion provided by the experiments on characteristic
energy losses" because the oxidation problem is so
severe. However, for the alkali metals the optical work
of Wood'4 on the change from the rejecting to the
transmitting region provide us with direct evidence on

"L.Marton and L. S. Leder, Phys. Rev. 94, 203 (1954).
'4 R. W. Wood, Phys. Rev. 44, 353 (1933); R. W. Wood and

C. Lukens, Phys. Rev. 54, 332 (1938).
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TABLE I. A comparison of Ace with 6&,b, for solids in which the
valence electrons are weakly bound and the core electrons are
tightly bound (co &2&eP&cus2). Z denotes the number of valence
electrons per atom we have assumed take part in plasma oscillation.

Element

z
Au {ev)
DE,b.(ev)

Be

2
19
19

8 C Mg Al Si

3 4 2 3 4
24 25 11 16 17
19 22 10 15 17

4
16
17

"A similar table was first given by R. A. I"errell. '4

the plasmon energy, since according to (26) this change
should occur for a photon energy equal to the plasmon
energy. In Table II we compare the optically deter-
mined plasmon energy with the theoretical value calcu-
lated using" (45). We have given for comparison the
free electron value and that experimental value of
Marton and Leder which lies closest to the optical value.
We see that the agreement between our calculated value
and the optical value is quite good. The remaining
small discrepancies can easily be explained by low
energy band-band transitions which will act to increase
somewhat the calculated values.

For most of the solids in Table I we should expect to
And a rather narrow line whose width could in principle
be calculated from (29) if the pertinent optical data
were available. Since it is not, we must rely upon quali-
tative considerations. With strong core and weak val-
ence binding there will be relatively few transitions at
frequencies comparable to cv, and for such transitions
the oscillator strengths tre probably small. In conse-
quence for a metal like Al we might expect a plasmon
lifetime of the order of (10/~„) 10 "sec and perhaps
even longer. Other substances for which comparatively
long lifetimes might be anticipated would be Be,
Mg, and Ge. For most of these solids the true widths
have probably not been measured, since the experi-
metal widths appear no greater than the width ob-
served for electrons which have suGered no energy loss
in the thin film. On the other hand, the fact that 8 and
C have rather broader lines (and shorter plasmon life-
times ~10 "sec) follows if we assume that the binding
of the valence electrons is not completely negligible for
these solids, a consideration which appears likely on the
basis of the observed frequency shift. It is surprising
that there is such good agreement between A~ and
AE,b, for Si, since it too is found to have a broad loss
line.

Now let us turn to our second category of solids,
those for which we do not expect to have weak valence
and strong core binding. In the transition metals, for
instance, suppose we treat both the s and d electrons as
valence electrons. Ke should then not expect to be able
to neglect band-band transitions as we increase the
total number of valence electrons, since when we begin
to have a large core charge, some of the valence elec-
trons will be quite tightly bound, and hence have im-

portant high energy band-band transitions. We then

TABLE II. A comparison of ~ with the optical data and the
observed energy losses for the alkali metals. All energies are
given in ev.

Element

Li
Na
K
Rb
Cs

8.1
6.0
44
4.0
3.6

8.0
5.7
39
3.4
2.9

8.02
5.91
3.94
3.65
3.27

Boobs

9.5
5.4
3.8

have a case of strong valence binding. We could discuss
this eGect in the following qualitative way. Consider
the dispersion relation (16). If we take all s and d
electrons as valence electrons, then we can certainly
neglect the core transitions. Further we see that band-
band transitions which are lower in energy than the
free electron plasmon energy will act to push it up,
whereas those which lie higher act to depress it. Thus
as we go through the transition elements in order of
increasing valency, we should expect that at first our
calculated plasmon energy will be on the low side of
the experimentally observed value. For there will be
low frequency band-band transitions which act to
increase the plasmon energy over the value given by
(45). As we increase the valency, some of the valence
electrons will become quite tightly bound, so that high
frequency (~„z))s&„)band-band transitions begin to
have an appreciable oscillator strength. Such transi-
tions depress co from the value (45). Thus, we might
expect that there is a valency region in which the eGect
of low-lying levels is essentially canceled by the high-
lying levels, and we find very nearly the value (45).
For a valency greater than this we definitely expect to
be on the high side of the experimental value, if we
use (45).

This qualitative picture appears to be consistent
with the experimental results, as may be seen from
Table III. Once again Ace is the value calculated taking
into account core polarization, and AE,b, is the ex-
perimental plasmon loss selected on the basis of the
criteria discussed earlier. We see that for Ti, which has
four valence electrons, we obtain too low a plasmon
energy using (39). For Cr, which has six valence elec-
trons, we appear to be in the region for which the effects
of band-band transitions cancel out. Beyond Cr, the
band-band transitions definitely act to depress the
plasmon energy below (39). A further indication that
for six electrons outside a closed shell the low-frequency
band-band transitions tend to neutralize the high-
frequency transitions comes from the plasmon energies
in Mo, Te, %, and Se, which may be seen from Table
III to be at very nearly the free electron value.

We are not really justified in trying to reach any
conclusions regarding the plasmon lifetimes on the
basis of such very qualitative considerations. However,
a hypothesis which appears not inconsistent with ex-
periment is the following. We might expect the loss
lines to be broader in the region of six valence electrons,
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TAME IH. A comparison of AN with bE,» for solids for which
either the valence electrons are not weakly bound or the core
electrons are not tightly, bound. Z denotes the number of valence
electrons per atom we have assumed to take part in plasma
oscillation.

Element

z
A

~Eobs

Element

Z
AN

~Eobs

Element

z
AN

~Eobs

Ti Cr Mn Fe Co Ni Cu Zn

4 6 7 8 9 10 11 12
17 24 28 31 34 35 36 32
22 24 22 21 21 23 20 23

Se Mo Pd Ag Cd In Sn Sb

6 . 6 10 11 12 3 4 5
i8 23 31 30 28 11 12 14
20 25 22 23 20 12 12 15

Te Ta W Pt Au Tl Pb Bi

6 5 6 10 li 3 4 5
15 20 23 30 30 12 13 14
18 21 22 23 24 17 13 13

since here both high- and low-frequency band-band
transitions act to damp the plasma oscillation, whereas
for a valence of four or eight, only low- or high-fre-
quency transitions, respectively, give rise to important
damping effects. This conclusion is in agreement with
the experimental endings of Marton and Leder, who
6nd the Cr and Mn lines to be roughly twice as wide
as those observed for Ti and Co"; it is not in agreement
with the results of Katanabe. "

Consider now the noble metals. Here we encounter a
case of weak core binding. For such metals two ap-
proaches are possible. One is that suggested by Wold.
If we consider, for instance, the plasmon formed from
the "s" electron interaction in Cu, we find an energy
of 11 ev. Such an energy is, however, large compared
to the energy required to excite one of the "d" core
electrons to the "s"band ( 4 ev). We must therefore
take into account the inhuence of the core-valence
transitions on the plasmon behavior. This is a rather
strong interaction, which consequently acts to broaden
the plasmon line considerably and shift its position
appreciably. It cannot be treated accurately by per-
turbation theory, but WolQ has made a rough estimate
which leads to the correct order of magnitude for the
broadening and shift. Ke might similarly assign the
large broadening and shift in Ag and Au to this
mechanism.

Because of the energy required to excite a core elec-
tron is so very small in these metals, we might alter-
nately argue that the core electrons should rather be
regarded as valence electrons insofar as their plasmon
behavior is concerned. For Cu we then have eleven
valence electrons, and a plasmon energy of 36 ev.
This energy we would then expect to be reduced con-

It should be noted that our approach to the transition metals
is rather different from that of Wolff. '2 Wolff discusses plasmon
behavior by considering the "s" electron plasmons in interaction
with individual d electrons. He is then led to the conclusion that
loss lines continue to broaden as one goes through the transition
elements in order of increasing valency. This conclusion appears
to be in contradiction with experiment.

'7 H. Watanabe, quoted in Marton ef, al.20

siderably by high-frequency band-band transitions,
so that it is not surprising that the observed value is
markedly lower at 20 ev. Thus we can regard the noble
metals as a case of weak core or strong valence binding;
the former picture is probably more suited to quantita-
tive calculations.

When we consider the divalent metals Zn and Cd,
we find that here, too, the core electrons cannot properly
be regarded as tightly bound. The "s"electron plasmon
energy is 13 ev for Zn whereas the energy required to
excite a core electron is probably somewhat less than
10 ev. A similar situation obtains for Cd, where the
"s"electron plasmon energy is ~11 ev, and the energy
for core excitation is about 10 ev. These metals should

clearly be treated on the same basis as the noble metals,
and we can understand the origin of the large breadth
and shift of the loss lines on the basis of the valence
electron-core coupling.

On the other hand, when we consider the metals
beyond Cd, (In, Sn, Sb, and Te), we appear to be in

much better shape. Although the core electrons for
In and Sn are not truly tightly bound (with excitation
energies of 17 and 22 ev), so that the cores are rather
polarizable (e,~1.35 and 1.23, respectively), we 6nd
plasmon energies at very nearly the values predicted by
the dispersion relation (39). Tl, on the other hand, is

clearly a metal for which the core electrons continue to
play an important role in determining the plasmon

energy. The good agreement for Sb and Te, Ta and W,
and Pb and Bi may be the result of cancellation between
the eGect of low-frequency and high-frequency band-
band transitions on the plasmon energy, as discussed

' above. It should be noted that even though there is

good numerical agreement between Ace and DE,~„the
line widths for these elements are definitely greater
than those observed for Be, Mg, Al, and Ge.

We now consider a comparison between theory and
experiment for the energy losses in compounds. We
here calculate the plasmon energy neglecting the correc-
tion for core polarizabilities, which should be an excel-
lent approximation for the tightly bound cores of the
compounds we consider. We take the total number of
valence electrons appropriate to the compound in
question (e.g. , A1203 yields six from Al and eighteen
from 0) in order to calculate Aa&. In choosing d E.q, we

are guided by the same considerations we followed for
the case of monatomic solids, and in Table IV we com-

pare QE,b, with Ace calculated assuming the binding of
the valence electrons is weak compared to the plasmon

energy A&.

We see first of all that this proves to be a surprisingly
successful assumption. There is generally close agree-
ment between A~ and DE,b,. For the sulfides, PbTe,
PbSe, Mica, BeO, MgO, Li2CO3, C2(OH)~, MoO, , and

SiO& the two values are essentially the same. This would

appear to indicate that for these substances the im-

portant valence band-conduction band transitions have

energies which are rather smaller than the plasmon
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TAsx,E IV. A comparison of leo with BE,b, for compounds. Z denotes the average number of valence electrons per atom we assume take
part in plasma oscillation. The investigators are Marton and Leder (ML), Watanabe (W), and Mollenstedt (M).

Compound

Z
M(ev)
AE,b. (ev)
Investigator

Compound

z
Ao) (ev)
nz, b.(ev)
Investigator

ZnS

4
17
17

Li&COg

4
24
24
W

Pbs

5
16
15
ML

Ca(OH) 2 MoOg

32 6
21 24
22 25
W W

Sb2S3

5.6
18
19
ML

Si02

5.3
25
25
W

MoS2

6
23
21
W

A120g

4.8
27
23
W

PbTe

5
14
15
ML

Te02

6
23
18
ML

PbSe

Sn02

5.3
26
20
W

Mica

4.7
24
25
M

KBr

4
13
13
ML

BQO

29
29
W

KC1

14
13
ML

MgO

25
25
W

NaC1

16
16
MI,

energies Ace. In A1203, Te02, and Sn02 there is perhaps
more in the way of covalent binding than for the pre-
ceding compounds, and this appears to have the ex-

pected effect on the plasmon energies. For, just as was
the case with C, tight valence binding will give rise to
important high-frequency band-band transitions, and
so act to decrease the plasmon energy from A~„.The
effect in these compounds is of the order of magnitude
to be expected from the observed shift in C.

The possible plasmon loss lines in KBr, KCl, and
NaC1 are rather difficult to identify because in both
KBr and KCl there are a large number of loss lines of
nearly equal intensity, whereas for NaCl the collodion
61m used as a backing contributes to the loss spectrum.
However, the experimental loss lines we quote seem to
be the most intense, and are in fact repeated with de-

creasing intensity. It is interesting to note that they are
in agreement with our calculated plasmon energies.

V.

In the preceding section we considered the experi-
mental information about the energy and lifetime of
plasmons in solids. In this section we discuss the in-

formation which may be derived from an experimental
study of the mechanism of interaction of the incident
fast charged particle with the plasmon assembly. Thus
we shall consider the mean free path for plasmon
production, and the angular distribution of electrons
which have given up energy to the plasmons.

Unfortunately there is little accurate information
available concerning the mean free path for plasmon
excitation. From the values quoted by Lang" for the
variation in plasmon excitation in Al with foil thickness
we may infer a quite approximate mean free path of
somewhat less than 180 A. This is in agreement with
the theoretical value of 190 A calculated from (38) for
the 7-kev electrons used by Lang. Recently Blackstock,
Ritchie, and Birkhoff have carried out a careful in-

vestigation of plasmon excitation in Al, Mg, and Cu by
electrons which range in energy from 20 kev to 100 kev.
We reproduce in Fig. 5 their results for plasmon excita-
tion in Al at 45 kev and 100 kev. It may be seen from
the relative shift of the various loss lines that the mean

~8Blackstock, Ritchie, and Birkhoff, Phys. Rev. 100, 1078
(1955).

where
3 Ep

G=
5 AM&

(46)

(47)

"Marton, Simpson, and McCraw, Phys. Rev. 99, 495 (1955).
30 H. Watanabe, J. Phys. Soc. Japan 11, 112 (1956).

free path for plasmon excitation decreases with in-
creasing incident electron energy, as we should expect
from (38). Blackstock et al. have carried out a detailed
comparison of (38) with experiment for Al, varying both
foil thickness and bombardment energy, and find satis-
factory agreement between theory and experiment.
The situation they find for Mg is somewhat ambiguous.
They observe a number of loss lines in multiples of

10 ev and a variation in the appearance of these
lines with bombardment energy. However, diferent
methods of determining the thickness of the Mg foils
lead to quite diferent results, one of which is in fair
agreement with (38). For Cu, on the other hand, they
find only a single loss at 23 ev regardless of foil
thickness and incident electron energy. The line is quite
broad so that a careful estimate of X is difficult. They
find a mean free path which, within experimental error,
is in agreement with expected theoretical values.

Marton, Simpson, and McGraw" have investigated
the angular distribution of 20-kev electrons&sc ered

by a thin gold film. Their experimental results o the
variation of beam intensity with angle of those elec-
trons which have lost 24 ev have been analyzed in
detail with the aid of (35) by Ferrell. '4 He shows that
the experimental results are consistent with the hy-
pothesis thtt the 24-ev loss corresponds to plasmon
excitation.

Watanabe" has studied the variation of energy loss
with angle for the scattering of 25-kev electrons by Be,
Mg, Al, Ge, and graphite. His experimental results
provide valuable information on the plasmon dispersion
relation and the critical wave vector k, beyond which
the plasmon cannot be regarded as an independent entity.

If the free electron picture is valid for a given solid,
the plasmon energy as a function of wave vector may,
according to (11) be written as
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and we have taken (hk'n/mac„) as rather smaller than
unity. Eo is the energy of an electron at the top of the
Fermi distribution. In NP it is shown that the expres-
sion (46) should be quite generally valid for k&k„n
will usually be altered from the free electron value,

I~cii- „,:, —— .~&~„-iirTII"III~

(47) by short-range electron-electron interactions and

by band-band transitions. According to (33), which
expresses the conservation of energy and momentum,
we have t') k/Ps for the angle tI by which an electron
of momentum j'0 is scattered upon excitation of a
plasmon of momentum k. We thus find from (46)

p 2

AE=Aco„+ n9'
m

(48)
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FIG. 6. Energy loss spectrum for Al (from Watanabe~). The
ordinate represents the angle by which the electron is scattered,
the abscissa the energy of the scattered electrons (measured from
zero, for electrons which have not been scattered in the foil).

for the relation between the angle by which the electron
is scattered and the energy of the plasmon responsible
for the energy loss and scattering.

In Figs. 6 and 7 we reproduce Watanabe's results for
aluminum. The lines 8 and 8' correspond to the 15-ev
and 30-ev losses, and represent electrons which have
excited one and two plasmons, respectively. The varia-
tion of energy loss with angle for these electrons is that
expected from (48). On the other hand, the straight
disuse line represented by D corresponds to the 23-ev
loss line. Lines similar to 8 are also found by Watanabe
in Be (19 ev), Mg (10.5 ev), Ge (16.5 ev), and graphite
(7.5 ev) .Lines similar to D were found in MgO (11.4 ev),
Ag (25 ev), and Au (25 ev).

In Table V we compare the experimental values of o,

with the free electron value (47) for those elements for
which a 8-type loss line was observed. We see that the
agreement is quite good for Be and Al, and a bit less so

for Mg and Ge. In a sense we 6nd the agreement more

surprising than the disagreement, since many factors in

addition to the free electron kinetic energy contribute
to n. The loss lines for Be, Mg, Al, and Ge we have pre-

viously identified as corresponding to plasmon excita-
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k, 0.353r,'kp, (49)

where kp is the wave vector of an electron at the top of
the Fermi distribution and r, is the average inter-
electron spacing measured in units of the Bohr radius.
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FIG. 7. The energy loss vs angle diagram constructed from Fig. 6
(from Watanabe~). The ordinate is the scattering angle in radians,
the abscissa is the energy loss divided by twice the incident elec-
tron energy.

tion. The 7-ev loss line in graphite certainly does not
correspond to the plasmon formed from all the valence
electrons (Aa& 25 ev). It might correspond to a plasma
oscillation of the m electrons in graphite (one per C
atom) which appear to have a good chance of oscillating
independently at a considerably lower frequency. If we
assume these are weakly bound, we find A~ 12 ev, in
fair agreement with the 7 ev observed. (The agreement
might be improved by taking into account the "static"
polarization of the remaining valence electrons. ) It is
scarcely surprising that in this case the free electron
value of o. is not in agreement with that observed
experimentaHy.

The D lines are all quite broad, so that one would not
expect a well-defined variation of energy loss with
angle. The 23 ev observed for Al might correspond to
plasmon excitation in A1203, the 25-ev losses for Ag and
Au are consistent with the hypothesis of plasmon ex-
citation. On the other hand, the 11.4-ev line for MgO is
likely to be a band-band transition.

From the maximum energy loss observed in a pattern
like 8, one can infer a maximum wave vector k, beyond
which the plasmon does not exist as a well-defined
mode of excitation of the system. We have estimated
this quantity elsewhere" by carrying out a variational
calculation to minimize the ground-state energy of a
gas of free electrons. The value so obtained was

TABLE V. Comparison of experimental and theoretical
plasmon dispersion relation.

Element

Be
Mg
Al
Ge
C

csex p

0.42~0.04
0.62~0.04
0.50~0.05
0.83~0.15
1.0 ~0.3

~free

0.45
0.44
0.45
0.45
0.40

For Al we should expect a maximum scattering angle,
k,/Po of 1.1&(10 ' rad for the 25-kev electrons

used by Watanabe. Watanabe finds instead that 8, is
experimentally somewhat higher, being 1.5—1.8)& 10 '
rad. This somewhat higher k, may receive an explana-
tion in the recent work of Ferrell and Quinn. " They
find that even a comparatively short-range interaction
between electrons may lead to a collective energy loss,
so that the cutoff in collective excitations is not really
sharp. Instead, beyond the value k, for which the plas-
mon picture is not suitable according to (49), there
still exist collective modes with energies in the region
of the plasmon energy. Ferrell and Quinn estimate that
the increase in the eGective cuto6 for collective excita-
tion is of the order of magnitude of that observed in Al.

VI.

In conclusion it is perhaps useful to turn once more
to the question of whether all the energy loss acts we
have discussed should properly be regarded as corre-
sponding to plasmon excitation. In the case of the sharp
loss lines observed for Be, Mg, Al, and Ge there can
certainly be little question. The energy losses appear
where we expect them to on theoretical grounds, and
the dispersion of the energy loss with scattering angle
is also in good agreement with theoretical expectation.
Again, the agreement between theory and experiment
for the optical properties of the alkali metals argues
strongly for the existence of plasmons in these metals.
I believe that the evidence derived from Table III is
equally good. The general variation of plasmon energy
through the elements listed there is completely con-
sistent with experiment. In a sense, what puzzles exist
have to do with why the agreement is so good, rather
than with explaining existing disagreements. And this
statement applies perhaps even more strongly to the
compounds considered in Table IV.

When we are dealing with a very broad loss line, as
is the case for a number of the materials considered
above, the question naturally arises as to whether one
need invoke a new elementary excitation to explain it.
For if we do so, the width of the line is a clear indication
that the excitation has an extremely short lifetime
because there are a large number of possible electronic
band-band transitions in its immediate vicinity. One
might then argue that the line could be more satis-

' R. Ferrell and J. J. Quinn, Bull. Am. Phys. Soc. Ser. II, 1,
44 (1956).
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factorily explained on the basis of a superposition of
sharp individual electronic loss lines, and that better
experiments will establish a fine structure to the loss
line. (Of course such a fine structure is not ruled out
for the solution of the rather complicated plasmon dis-
persion relation. ) In a sense such an argument is always
correct, in that we are dealing with a collection of indi-
vidual electrons and any excitation can, in principle, be
described in terms of their motion. The essential point
is that where the correlations between the electrons are
so important that they determine the character of a
given excited state, a description in terms of the indi-
vidual electrons is quite complicated, and perhaps not
even useful. It is under just such circumstances that
it is convenient and simple to introduce a collective
mode to describe the excited state, and this is what we
have done with the plasmons. As we have mentioned
such a description is obviously called for with the narrow
lines. I believe it is equally useful with the broad lines
we have considered, for the position and intensity of the
lines indicates that Coulomb correlations have con-
tributed to an important enhancement and shift of the
energy loss, making a plasmon description the more
appropriate one.

Certainly individual electron band-band transitions
will take place, and I am inclined to assign many of the
low-lying loss lines we have not considered to this
mechanism. Clearly a great deal of work is needed to
render such an interpretation plausible in the light of
the known band structure and anticipated transition
probabilities for a given solid. " I do not believe the
correlations between the x-ray fine structure and the
characteristic loss lines discussed by Leder, Mendlowitz,
and Marton" establishes the individual particle char-
acter of the loss lines. For one thing, the processes are
quite different. In one case we have a core electron
which makes a transition to a state at the top of the
valence band, or to one of the higher bands. In the
other we deal with an average over all transitions from
the valence to the higher bands. It would be quite sur-

prising if the variation in the density of initial states

N The work of Rudberg and Slater (Phys. Rev. 50, 150 (1936)j
should be mentioned in this connection."Leder, Mendlowitz, and Marton, Phys. Rev. 101, 1460
(1956).

in the latter case did not frequently lead to significant
differences in the two processes. A tentative explana-
tion of the similarity of the energy differences might be
given along the following lines. The correlation between
the valence electrons which gives rise to plasmon excita-
tion is just such as to enhance the density of states of
the system at a distance Ace above the ground state of
the valence electron assembly, so that a transition of
the core electron to such a state would be definitely
favored. Such an enhancement would then give rise
to fine structure in the x-ray absorption spectrum.

It is obvious that a great deal of work, both experi-
mental and theoretical, lies ahead before we may feel
that our understanding of the energy loss spectra is
truly satisfactory. The existing discrepancies between
the work of different investigators on the same material
must certainly be resolved. It would be desirable to
extend the sort of surveys of energy loss spectra which
has been carried out to include as many as possible
of the thus far uninvestigated elements and compounds.
It will be interesting to see whether the most prominent
energy losses thus found continue to fit in so well with
the predicted plasmon behavior. Furthermore, it should
now prove fruitful for an investigator to concentrate
upon a given material, both theoretically and experi-
mentally, in order to obtain as complete an under-
standing as possible of the origin of the different energy
losses (whether single or repetitions of elementary
events, whether plasmon or a band-band transition),
their variation with angle, relative cross sections, and
the like. Another interesting question worthy of in-
vestigation is the dependence of the plasmon production
cross section on foil thickness for very thin foils which
has been discussed by Gabor. '4

Let me conclude with a word of cheer to the experi-
mentalist in this field. In working with the plasmon,
the solid state physicist is able to outdo his elementary
particle brethen in at least one important respect.
The most short-lived elementary particle which has
thus far been observed is the m' meson which has a
lifetime of 10 "sec. On the other hand in the plasmon
we are able to observe an elementary excitation with a
lifetime as short as 10 "sec.

"D. Gabor, Phil. Mag. Ser. 8, 1, 1 (1956).




