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1. Introduction

Many sources of light involve transitions between the elec-
tronic energy levels of a well-defined quantum system, for 
example dye molecules and quantum dots. It is now widely 
known that the rate of the emission process can be modified by 
placing the emitter in a structured environment, e.g. in front of 
a mirror [1]. Usually the interaction between the emitter and 
its local optical environment is such that only the spontaneous 
emission rate is modified, the emission frequency remaining 
unaltered. However, if the interaction is strong enough then 
the energy levels responsible for the emission are also altered, 
they become inextricably linked with the levels (modes) of 

the local optical environment. If this happens the energy lev-
els of this hybrid system may be very different from those of 
the emitter or the optical system individually. This situation is 
known as strong coupling and is the subject of this review. Not 
only do these new hybrid systems offer an exciting arena in 
which to explore light-matter interactions, they also offer the 
prospect of exploiting nano-fabrication techniques to design 
quantum optical systems.

The paradigm model of strong coupling is that of two cou-
pled harmonic oscillators, they may become coupled if there 
is some way for them to exchange energy. The dynamics of 
the coupled system is influenced not only by the original fre-
quencies of the oscillators but also by the exchange process 
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involved in the coupling. The energy spectrum of the system 
is modified: indeed, one obtains new modes whose frequen-
cies are different from those of the original oscillator modes, 
the difference between the original and the new frequencies 
depends on the strength of the coupling. If the coupling is very 
small compared to other relevant energy scales, the modifica-
tion of the original energies due to the coupling is negligible: 
this is the weak coupling regime. On the other hand if the cou-
pling is large compared to other energies, the coupling modi-
fies the energy spectrum of the total system qualitatively: this 
is the strong coupling regime. The new energies in the strong 
coupling regime correspond to modes that are hybrids of the 
original modes of the two oscillators [2].

Strong coupling phenomena are observed in and are of 
importance to several fields of physics and technology. A 
large variety of strong coupling phenomena are observed in 
case of the light-matter interaction: the light field of a certain 
frequency is one of the oscillators and a material (atom, mol-
ecule, semiconductor, etc) with a well-defined optical transi-
tion provides the other oscillator. The phenomenon has been 
realized also for systems where the field frequency is not in 
the optical domain.

One of the attractions of the combination of having exci-
tons as one of the oscillators and plasmon modes as the other 
is the very extensive control we have over the plasmon modes 
supported by metallic nanostructures. This control derives 
from a combination of impressive nano-fabrication techniques 
[3] and a very good understanding of the relationship between 
the details of the nanostructure and the nature of the associ-
ated plasmon modes [4].

We will now discuss the basics of the strong coupling 
phenomenology with the aid of a simple example, that of 
two coupled classical harmonic oscillators. More elaborate 
descriptions, in the specific context of this review article, are 
given in sections 3 and 5.

1.1. Strong coupling basics: two coupled harmonic oscillators

Let us consider two harmonic oscillators that are coupled. 
Examples of such systems include: two coupled pendula 
(oscillating at small frequencies), an optical field coupled to a 
dipolar two-level transition of an atom/molecule and a micro-
wave field coupled to a resonating circuit. Here, for simplicity, 
we set the resonance condition, that is, the frequencies of the 
oscillators, to be the same. The treatment can be easily gen-
eralized to the case of the individual oscillators having differ-
ent frequencies. Using the theory of simple harmonic motion 
the dynamics of the coupled system is described by (see also 
figure 1) [5],
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Here ω is the angular frequency of the oscillators and Ω gives 
the strength of the coupling between the two oscillators, 

which we refer to by the labels 1 and 2. These differential 
equations can be solved to give the time evolution for the posi-
tions of the oscillators:

 ω ω= + + ++ −x t A t C B t D( ) sin ( ) sin ( ) ,1 (3)

 ω ω= − + + ++ −x t A t C B t D( ) sin ( ) sin ( ) .2 (4)

The constants A, B, C and D may be determined from the ini-
tial conditions. The new frequencies that appear here are,

 ω ω Ω= ++ c
2 2 2 (5)

 ω ω Ω= −− c
2 2 2 (6)

 ω ω Ω= + .c
2 2 2 (7)

Here ωc
2 is the frequency that one of the oscillators would have 

if the other one was held fixed. The new frequencies ω+ and 
ω− are the normal modes of the coupled oscillator system. Let 
us now assume that we want to find the frequencies ω+ and 
ω− by observing the dynamics of the system. From (3)–(4) 
one obtains

 ω + = −+t C
A

x t x tsin ( )
1

2
( ( ) ( ) ) ,1 2 (8)

 ω + = +−t C
B

x t x tsin ( )
1

2
( ( ) ( ) ) .1 2 (9)

We see that the normal modes ω+ and ω− are not related to 
the motion (position) of either of the single oscillators alone, 
instead, to find the normal modes one needs to examine the 
time evolution of the motion of both oscillators. In other 
words, the normal modes are hybrid modes of the two origi-
nal oscillators. As a result it is no longer adequate to describe 
the system in terms of the original oscillators, rather one 
should use the normal, hybrid modes. Note that the energy 
(frequency) separation of the normal modes depends on the 
coupling Ω.

One can show, as will be done in sections 3 and 5, that the 
effect of the coupling becomes smaller the further away one is 
from the resonance condition. Let us say the oscillators have 
different frequencies, ω1 and ω2; their difference is defined as 
δ = ω1 − ω2 and is called the detuning. Assume now that one of 
the original oscillator frequencies is not tuneable: for instance 
in the case of an atom interacting with a light field it would 
be natural to have the energy of the electronic transition fixed, 
the other frequency can be varied. In the atom + light example, 
it would be possible to tune the frequency of the light field. 
Naturally, when one of the frequencies changes, the detun-
ing δ changes. The behaviour of the energies (frequencies) of 
the coupled system is now shown in figure 2. The data show 
the avoided crossing of an excitonic transition associated with 
J-aggregated dye molecules and a surface plasmon-polariton 
mode taken from the work of Bellessa et al and discussed in 
section 4.1 below. The behaviour expected if there were no 
strong coupling is shown by the dashed lines. Far away from 
the resonance, the energies (frequencies) of the original oscil-
lators are practically unchanged from the un-coupled case. 
Near the crossing point (of the non-coupled case) the new 
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normal modes appear as a result of the coupling: a so called 
avoided crossing is observed. The energy separation between 
the normal modes at the avoided crossing is called the normal 
mode splitting or, equivalently, the Rabi split or the Rabi split-
ting (the origin of the name will become clearer in section 5).

Although the new normal modes always appear for the 
coupled system, whether the phenomenon is significant 
depends on the strength of the coupling, compared to other 
relevant energies. Accordingly two regimes may be defined: 
the weak coupling and the strong coupling regimes. How the 
regimes are defined, however, depends to some extent on the 
context. For mechanical oscillators, like strings, strong cou-
pling is sometimes defined as Ω > ω: the coupling modifies 

the oscillation frequency considerably when it is of the order 
of the frequency itself. However, in some other contexts the 
frequencies of the oscillators can be really high, as is the case 
for instance with light fields, 1015 Hz and a lot of interesting 
physics can be observed already for couplings that are much, 
much smaller than this (actually, in many contexts Ω > ω is 
the condition for the so-called ultrastrong coupling regime). 
Perhaps a more useful comparison energy scale is the tran-
sition linewidths, the pictures on the right side of figure  2 
illustrate this. The width of the energy line schematically rep-
resents the linewidth. The Rabi split becomes significant, i.e. 
experimentally observable, only when the coupling is large 
enough compared to the linewidth. Thus the strong coupling 

Figure 1. Two coupled harmonic oscillators. Two coupled strings (a) and coupled pendulums (b) are given as examples from the 
macroscopic world. In the microscopic and nanoscale, for instance atoms/molecules interacting with cavity (c) or surface plasmon fields 
(d), or superconducting circuits interacting with microwave resonators (e) can be approximated as coupled oscillators.

Figure 2. Left figure: strong coupling between a surface plasmon-polariton mode (diagonal dotted line) and an excitonic mode (horizontal 
dashed line). The energies of these two modes are shown as a function of in-plane wavevector. The system is a metal film (that supports 
the SPPmode) overcoated with a film of polymer containing aggregated dye molecules. The solid lines and the data (circles) show how 
these modes interact to produce an avoided crossing, the dashed lines show the dispersion expected in the absence of strong coupling. 
Figure reproduced with permission from [6]. Figures on the right: strong coupling regime can be defined as the splitting being large enough 
compared to the linewidths of the coupled states so that it is actually experimentally visible as in the upper picture; in the lower one, the 
splitting is hidden under the linewidths.

Rep. Prog. Phys. 78 (2015) 013901
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regime is sometimes defined as the range where the coupling 
exceeds the linewidths of the two coupled systems. This issue 
is however a subtle one and will be discussed in section 4.2. 
The definition of strong coupling is thus somewhat context 
sensitive, depending among other things on the conventions 
of the particular field of physics involved. For the purposes of 
this article, we define the term strong coupling in a pragmatic 
way: the system is in the strong coupling regime whenever the 
Rabi split is experimentally observable.

Strong coupling physics is intimately linked with the con-
cept of coherence. In the harmonic oscillator example above 
we ignored damping, if we now consider the oscillators to be 
damped then it is easy to show that if the damping is much 
stronger than the coupling between the oscillators, then the 
normal modes approach the frequencies of the original oscil-
lators i.e. the effect of the coupling on the energies is neg-
ligible. The difference in the normal mode frequencies, i.e. 
the splitting, was given by the strength of the coupling, the 
associated timescale is related to the inverse of the coupling 
strength. Now, to resolve such an effect by Fourier analysis 
into a notable feature in the energy spectrum one would need 
oscillatory motion for a timescale longer than the inverse of 
the coupling. For damping stronger than the coupling this 
does not happen. In the context of light interacting with 
matter (and also for many other systems in the microscopic 
world) the undamped oscillatory behaviour is referred to by 
the word coherence. One can have either classical coherence, 
such as coherent light with a well-defined phase and/or quan-
tum coherence such as quantum superpositions between dif-
ferent quantum states (e.g. the ground and excited electronic 
states of an atom). To observe strong coupling the system in 
question has to have coherence times that are larger than the 
inverse of the coupling.

1.2. Relevance and applications of strong coupling

Whenever one observes strong coupling, it is a signature of 
entering a regime where coherence phenomena play a role. 
Strong coupling is thus intimately connected to important 
phenomena such as stimulated emission, gain and lasing. In 
the strong coupling regime, it may be possible to realize, for 
example, tresholdless lasing [7]. Apart from coherence, an 
interesting issue is the hybrid nature of the normal modes. 
The normal mode possesses properties of both of the oscil-
lators, which in the case of, for instance light and matter, can 
be very different. This leads to interesting phenomenology 
and possibilities for applications. An example of this was the 
strong coupling of excitons and light into hybrid modes called 
polaritons in semiconductor systems. By making clever use 
of both the excitonic (that is, simply electrons of the semi-
conductor) and the light part of the polariton, it was possible 
to realize Bose Einstein condensates of polaritons [8]. In the 
context of quantum information technology, achieving the 
strong coupling regime or, in other words, quantum coherent 
oscillations between the coupled systems, is a prerequisite for 
quantum information processing. Furthermore, the ability of 
strong coupling to modify the electromagnetic environment 
of an emitter has been used to modifying chemical landscapes 

and to control chemical reaction rates [9]. In the context of 
superconducting qubits (two-level systems) interacting with 
microwave radiation, the coupling between a qubit and the 
electromagnetic modes of an infinite quasi-1D transmission 
line results in interference effects between the incoming wave 
and the wave emitted by the qubit. This effect gets stronger 
as the coupling to the line increases, thus rendering the decay 
into the line as the dominant decay channel of the qubit. This 
type of 1D fluorescence effect has been observed experimen-
tally [10] and it could have applications for single-photon 
switches [11], routers [12], photon detectors [13] and interfer-
ometers with single-atom mirrors [14].

The focus so far has been on strong coupling between a 
quantum emitter and a field mode, what will happen if we 
look at how the exchange of energy between two emitters (res-
onant energy transfer) is modified when the two emitter sys-
tem is strongly coupled to a surface plasmon polariton (SPP) 
mode. The use of SPP modes associated with planar metal 
films to extend the range over which energy transfer between 
two emitters may take place, a distance which is typically 
only of order a few nm, was reported by Andrew and Barnes 
in 2004 [15]. Martin-Cano et al made use of finite element 
modelling to show that energy transfer between emitters could 
also be achieved using plasmon waveguides, such as channel 
and wedge plasmon modes [16]. To-date there appear to be no 
reports of how resonant energy transfer is modified when both 
donor and acceptor are strongly coupled to an SPP mode. It 
will be interesting to see how this topic develops, the role of 
the local optical density of states in resonant energy transfer is 
still a controversial one [17, 18].

It is useful at this stage to remind ourselves about strong 
coupling in microscopic systems, e.g. atoms in cavities. It was 
in such systems that strong coupling was first observed and it 
still provides the foundation against which to compare other 
systems, such as the quantum emitter + SPP mode considered 
here.

1.3. Observations of strong coupling in microscopic systems

We do not concern ourselves here with macroscopic mechani-
cal systems showing strong coupling but focus instead on the 
strong coupling phenomena in the microscopic world. There, 
the two systems that are coupled can be described quantum 
mechanically, although often a purely classical or semiclas-
sical description is sufficient for a quantitative account of 
experimental observations.

Concerning light and matter, the coupling between them 
is usually rather weak. This is fortunate when we consider 
applications such as spectroscopy: if the aim is to measure 
the optical transitions of the material, one does not want the 
coupling with the probe light to modify them! However, to 
utilize coherence and other strong coupling benefits, it has 
been a long-term goal to reach the strong coupling regime of 
light-matter interactions. This was achieved at first at micro-
wave frequencies for a single Rydberg atom [19] and for a few 
atoms [20] in a superconducting cavity in 1987, following ear-
lier many-atom strong coupling [21] and one-atom maser [22] 
studies. Strong coupling was realized in the optical regime 
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first with many atoms [23–25] and finally in 1992 with a sin-
gle atom [26] inside an optical high-finesse cavity. Later laser 
cooling and other techniques allowed the creation of ultracold 
gases, even forming Bose Einstein condensates [27–29] and 
there one can achieve coherent behaviour of a macroscopic 
cloud of atoms described by a single wavefunction. Atoms 
have been coupled strongly with light in various shapes of 
cavities such as waveguide structures and whispering gallery 
mode microresonators, leading to e.g. strong coupling with 
non-transversal fields as in [30], see also references therein.

These early reports on strong coupling involved atoms in 
vacuo. In the 1990s, Rabi splittings of the order of 1–10 meV 
were observed for light interacting with emitters in solid-state 
systems, specifically inorganic semiconductors where inte-
grated microcavities were employed at cryogenic temperatures 
[31–34] (strong coupling features, even at room temperature 
were observed in [35]) for a review see e.g. [36]. There it was 
referred to as multi-atom vacuum Rabi splitting, since the 
semiconductor material, not single atoms or molecules, was 
interacting with the light field. The difference between the 
single-emitter and multi-emitter case will be discussed in sec-
tions 3 and 5. Solid state single-emitter strong coupling was 
later achieved as well: in 2004, a single quantum dot interact-
ing with a photonic crystal cavity mode was shown to display 
a vacuum Rabi split [37, 38], for a review see [39]. In later 
experiments, the quantum nature of the single quantum dot/
microcavity strong-coupling was demonstrated to the extent 
that these systems would be feasible for quantum information 
processing [40].

In 1998 reports concerning organic semiconducting 
materials for realizing the strong coupling regime emerged: 
large Rabi splits of the order of 100  meV were reported 
and, importantly, using organic materials it was possible to 
obtain this strong coupling at room temperature [41, 42]. In 
2002 it was shown that a system that included emitters based 
on organic semiconductors placed within a metal microcav-
ity may lead to a 300 meV Rabi split at room temperature 
[43]. This splitting was greater than that achieved for cavi-
ties based on dielectric mirrors owing to the larger optical 
fields arising from the tighter confinement of the field in 
all-metal microcavities. Strong coupling in microcavities 
was observed also for small molecules [44] (for a review 
see [45]). These developments suggested there were advan-
tages in using organic materials in the search for robust, 
room temperature strong coupling phenomena [42, 46, 47]. 
This work paved the way for the development of strong cou-
pling involving surface plasmon polaritons, the topic of this 
review article.

We note here that strong coupling has also been explored 
in a number of systems that do not involve emitters. One area 
that is very topical is that of nanomechanical systems. Strong 
coupling of an optical cavity to a mechanical resonator was 
reported by Gröblacher et al [48] in 2009 and microwave strong 
coupling with nanomechanical systems was observed in 2010 
[49]. Recently microwave amplification [50], hybrid circuit-
cavity-quantum-electrodynamics/micromechanical-resonator 
systems [51] and a room temperature optoelectromechanical 
transducer [52] have been realized in such systems. Another 

interesting area is that of strong coupling using superconduct-
ing components. Attaining the strong coupling regime is made 
easier there because dissipation is low in superconducting sys-
tems. It is possible in well designed circuit elements made 
of superconducting components, such as coplanar waveguide 
resonators and LC oscillators, that the coupling, realized 
either inductively or capacitively, is larger than the decay rate 
of the oscillators. In this strong coupling regime, it is possible 
to observe the coherent transfer of quanta between the two 
systems. The first demonstrations were reported in [53, 54]. 
In the first case, a flux qubit (a superconducting loop inter-
rupted by two Josephson junctions) was coupled to an oscil-
lator (a SQUID structure). In the second case, a microwave 
resonator (a cavity) was fabricated as a segment of a copla-
nar waveguide and a charge qubit (a Cooper-pair box) was 
embedded in the gap between the signal line and the ground. 
For this design, the strong coupling regime was reached due 
to the combination of the large electrical dipole of the Cooper 
pair box and the large electrical field strength of the quasi-1D 
cavity. Since these experiments, the strong coupling regime 
and vacuum Rabi oscillations have been routinely reproduced 
in various labs with all the combinations of qubits and oscilla-
tors. These systems offer one way to create quantum gates that 
are needed for quantum processing tasks. Furthermore, the 
availability of strong coupling and the possibility of designing 
it by microwave engineering allows the realization of complex 
quantum circuits that could be used in principle as simulators 
for quantum many-body and quantum field theory systems, 
for a review see e.g. [55].

The degree of freedom that couples strongly with the elec-
tromagnetic field may also be the electron spin. Recently, 
nitrogen vacancies (NV centers) in diamond have emerged 
as very promising spin systems where the relevant degree 
of freedom is the electron spin of the NV center. Electron 
spin may be coupled to a microwave field. Strong coupling 
of a spin ensemble to a superconducting resonator has been 
observed since 2010 [56, 57]. It has been achieved also for 
ensembles of electron spins in other solid state materials such 
as ruby [58] and rare-earth materials [59]. Although it goes 
beyond our focus on field-matter strong coupling, it is worth 
mentioning in this context that coherent coupling of a super-
conducting flux qubit to an electron spin ensemble in diamond 
was reported in 2011 [60]. Reaching the single spin strong 
coupling regime in all these systems is challenging.

Strong coupling is not an easy regime to achieve. For 
instance with trapped ions, which are an extremely promising 
system for quantum information processing [61–64], thus far 
only many-ion strong coupling with light has been realized 
in experiments [65]; it is difficult to make a cavity around a 
trapped ion that is small enough to enable single-ion strong 
coupling to be achieved. The quantum information process-
ing applications in these systems do not require light-matter 
strong coupling, however, strong coupling would certainly 
bring a new and interesting degree of freedom to the sys-
tem. The challenge is to create small enough optical cavities 
around the trapped ions. A step towards this has been taken in 
[66] where the ion trap was built inside an optical fiber resona-
tor with a small mode volume.

Rep. Prog. Phys. 78 (2015) 013901
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In the following section  we look at what happens when 
one of the oscillators is a plasmon mode. More specifically, 
we consider the case of emitters coupled to a plasmon mode 
(rather than, for example, a cavity mode).

1.4. Strong coupling between surface plasmon polaritons 
and emitters

Recently, strong coupling of surface plasmon polaritons with 
emitters has become an active topic of research. Surface plas-
mon polaritons (SPP) are hybrid modes involving electron 
oscillations in a metal in conjunction with an oscillating light 
field on the metal surface (more details are given in section 2). 
The energies can be in the optical domain. Due to their near-
field character, the light field component of a SPP may be con-
fined to dimensions smaller than the free-space wavelength of 
light at the same frequency. This allows one to enter the world 
of nano-optics where light can be confined to dimensions sim-
ilar to other nano-objects [67, 68]. This field confinement also 
leads to a field enhancement, something that is used to great 
effect in, for instance surface-enhanced Raman spectroscopy 
(SERS) [69]. The sensitivity of SPP resonances to the refrac-
tive index of the medium adjacent to the metal has enabled 
commercial biosensing applications [70]. Attaining the strong 
coupling regime using SPPs was reported for various types 
of emitter: J-aggregates [71–78], dye molecules [79–81] and 
quantum dots [82, 83]. A more comprehensive list of refer-
ences is given in section  4. Strong coupling of SPP modes 
with systems other than emitters, namely photonic modes, has 
also been realized [84].

Let us now compare the strong coupling in SPP systems 
with the other systems described above. The strength of the 
coupling between matter and light can be increased in two 
ways: by increasing the dipole moment (oscillator strength) 
of the matter part, or by confining the light into smaller vol-
ume. To reach the strong coupling regime, the coupling has 
to be large compared to the energy widths of the individual 
resonances, that is, the linewidth of the optical transition and/
or the linewidth of the optical field. Thus in addition to, or 
instead of, increasing the coupling, one may aim to decrease 
the linewidths. In the atom + optical cavity systems, nothing 
could be done about the dipole moment of the atom which is 
given by nature, but the cavity helped to decrease the mode 
volume and the light linewidth. Due to the small value of 
the dipole moment of single atoms, very high finesse cavi-
ties are required to realize strong coupling, something that is 
technically demanding. In the strong coupling studies where 
semiconductor microcavities are employed, many dipoles 
contributed to the effect and consequently the effective dipole 
moment was larger. Naturally, the microcavities help by 
decreasing the mode volume. Yet the coupling in inorganic 
semiconductor materials is so weak that one has to cool the 
samples to liquid nitrogen temperatures to decrease the line 
widths so that Rabi splittings become visible. For inorganic 
semiconductor materials, room temperature strong coupling 
is achievable, but microcavities are still needed.

In the case of SPPs, the mode volumes are extremely small 
since light is confined in the nanoscale rather than micronscale 

[67]. The SPP field intensity is enhanced due to the resonant 
character of the SPP excitation (see section  2). Moreover, 
relatively large effective dipole moments can be achieved by 
using high concentrations of the optically active materials 
(molecules, quantum dots). Indeed, Rabi splits of 450 meV 
were observed in 2009 [78] and in 2011 even 650 meV which 
is already in the ultrastrong coupling regime [85]. For these 
reasons it is possible to observe the vacuum Rabi splitting 
for SPP and emitters at room temperature AND without the 
need for a closed cavity. This is a major technical advantage 
that may be very important for potential applications. Another 
important difference is that the SPP + emitter system allows 
one to probe strong coupling phenomena in the nano-world in 
the sense that both the light and the matter part of the strongly 
coupled hybrid can be confined to the nanoscale. Due to the 
dissipative nature of SPP modes, the lifetimes of the hybrid 
modes created by strong coupling are much shorter than is 
the case for optical or microcavity systems. In other words 
fewer Rabi oscillations will take place before coherence is 
lost. The coherence times of SPP are typically of the order 
of 10–100  femtoseconds [86, 87]. An interesting possibility 
to increase the coherence times, that is, the Q-values of plas-
monic modes is to use collective resonances (so-called sur-
face lattice resonances) possible in metal nanoparticle arrays 
[88–90]. To increase the photon number, one could also use a 
gain medium. Gain and lasing are active areas of research in 
plasmonics, see for example [91]. Strong coupling in general 
depends on the photon number, i.e. the strength of the field. 
However, in this review our focus is on the limit of weak fields, 
which means the vacuum Rabi splitting involving zero to one 
photons in the quantum case and the linear response regime 
in the classical case. Most of the existing experiments on 
strong coupling in plasmonics operate at this weak field limit. 
Thresholdless lasing is a phenomenon which combines strong 
coupling and gain and is briefly discussed in section 5.5.

1.4.1. Status of the research. The first reports of strong cou-
pling for SPP systems concerned observations of splittings 
in the energy spectrum and used organic molecules called 
J-aggregates for the emitters [71–78]. The special feature of 
J-aggregates is that they have a relatively narrow absorption 
line. Interestingly, strong coupling is possible also for mol-
ecules with a broader absorption line, such as Rhodamine 6G 
[80, 81, 92–94]. Strong coupling has been demonstrated for 
other dye molecules [95, 96] as well as for photochromic mol-
ecules [85]. Strong coupling between quantum dots and SPP 
was achieved in [82]. The dynamics of the phenomenon have 
also been explored [80, 97, 98]. A more complete list of refer-
ences on these topics will be given in section 4. Recently, the 
coherence over large distances that is typical for strong cou-
pling was demonstrated [99] in the strong coupling regime. 
The transition from weak-to-strong coupling was studied in 
[94], showing how the wave-function (mode-function) and 
the corresponding spatial coherence properties, of the strongly 
coupled hybrid evolves when going from weak to strong cou-
pling. It has become of interest to explore the quantum origin 
of the strong coupling phenomenon in plasmonics and indeed 
the theoretical quantum descriptions of strong coupling 
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between SPPs and many emitters have been developed [100]. 
The existing experiments, at the level of the present experi-
mental accuracy, are qualitatively consistent with classical, 
semiclassical and fully quantum descriptions. While it is natu-
ral to use quantum theory as the most accurate microscopic 
description of the physics of atoms, molecules and photons, it 
is also of interest to try to identify phenomena where the clas-
sical theory completely fails. One of the goals of this review is 
to present the classical, semiclassical and quantum theories of 
strong coupling in a compact way that allows easy compari-
sion of the similarities and differences between these descrip-
tions: the details will be discussed in sections 3 and 5 and a 
summary is made in the concluding remarks in section 6.

In this review article, we will present the theoretical 
background necessary for understanding and quantitatively 
describing the SPP strong coupling phenomena, we will 
review the main experimental and theoretical developments 
in the field and outline future directions and challenges. The 
article is organized as follows. Section  2 presents the basis 
of surface plasmon polariton physics. In sections 3 and 5 the 
classical and quantum descriptions of SPP strong coupling 
phenomena are presented, respectively. Section 5 covers both 
the semiclassical description and the one where the SPP field 
is also quantized. The experiments on SPP strong coupling 
are reviewed in section 4. Finally, we outline our views for the 
future of this fascinating research area in section 6.

In the following section  we provide an overview of sur-
face plasmon polaritons with a focus on those aspects that 
are important in the context of strong coupling. A number of 
excellent more extensive introductions to surface plasmon 
polaritons are available in the literature [69, 101–103].

2. Surface plasmon polaritons: overview

In much the same way that light can be guided by an opti-
cal fibre, it may also be guided by the interface between a 
metal and a dielectric. More specifically, under appropriate 
conditions, light may interact with the free electrons (the 
plasma) in the surface of a metal to yield a combined electron/
light oscillation mode known as a surface plasmon-polariton. 
Surface plasmon polaritons are one of a wider class of surface 
modes where the interaction between light and matter leads 

to the possibility of a bound surface mode, other possibilities 
include surface phonon polaritons [104] and surface exciton 
polaritons [105]. In addition to these propagating surface plas-
mon polaritons, there is also an interesting class of surface 
plasmon polaritons that are spatially confined. This confine-
ment is a result of being associated with metallic nanostruc-
tures such as nano-spheres, nano-discs etc, such modes are 
called localised surface plasmon polaritons; both propagat-
ing and localised modes will be of interest to us here. Before 
looking at these modes in detail, let us identify the attributes 
that SPPs possess, attributes that make them interesting in the 
strong-coupling context.

There are three important attributes of SPPs that we con-
sider here: optical field confinement, optical field enhance-
ment and near-field character; all three are related to the fact 
that SPP modes are bound to interfaces. The spatial distribu-
tion of the electric field (it is primarily the electric field rather 
than the magnetic field that is of interest in strong coupling 
phenomena) is shown in figure 3. The strength of the field 
decays exponentially into the surrounding media. The decay 
length into the dielectric is  ∼  λ/2n where n is the refrac-
tive index of the dielectric. The decay length into the metal 
is ∼20 nm (for most metals of interest in the visible part of 
the spectrum) [106]. The confinement of the optical field to 
the proximity of the surface is evident from the evanescent 
nature of these fields. Associated with this confinement is 
an enhancement in the strength of the electric field adjacent 
to the surface [69]. Figure 3 also shows the charge density 
and associated electric field distribution. The near-field char-
acter is important for both propagating and localised SPPs 
since, as we will see, it facilitates coupling between quantum 
emitters and SPP modes. Let us now look at these modes in  
more detail.

2.1. Propagating surface plasmon polaritons

We are concerned here with surface plasmon polaritons that 
propagate along the interface between a metal and a dielectric. 
The field distribution associated with these modes, together 
with their dispersion relation, are calculated by looking for 
solutions to the Maxwell equations in a source-free region of 
space comprising two semi-infinite media, the metal and the 

Figure 3. Left: schematic of electric field and charge distribution associated with the surface plasmon polariton mode on a planar surface, 
at the interface of a metal and a dielectric medium. Right: the strength of the field associated with the SPP mode decays exponentially 
with distance away from the surface both in the dielectric medium (positive z; z axis is perpendicular to the plane). The decay length is 
approximately the wavelength λ of the field divided by 2n where n is the refractive index of the dielectric medium. In the metal the decay 
length is the skin depth and is typically of the order of 20 nm for the noble metals used in plasmonics.
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dielectric. Some of the fields are shown schematically in fig-
ure 3. The dispersion relation, i.e. how the in-plane wavevec-
tor of the SPP mode varies with frequency of the mode, is 
obtained by solving the Maxwell equations under appropriate 
boundary conditions and looking for a solution that takes the 
form of a surface wave, the result is [107],

 
ω= ϵ ϵ

ϵ + ϵ
k

c
,SPP

1 2

1 2
(10)

where ϵ1 and ϵ2 are the frequency dependent relative permit-
tivity of the two media. If we take the simplest model for the 
permittivity of a metallic plasma, i.e. the Drude model,

 ω ωϵ = −1 / ,P
2 2 (11)

then the dispersion relation above, equation  (10) takes the 
form shown in figure 4(c) below.

The permittivity given by equation (11) does not include 
damping of the electronic motion. Including damping is easily 
accomplished by adding an extra term,

 
ω

ω Γω
ϵ = −

+
1

i
P
2

2 (12)

where Γ is the damping rate. Naturally, damping places 
limitations on quality factor of SPP resonances and also on 
the extent of the associated electromagnetic field enhance-
ment. Since the strength of the coupling between SPPs and 
quantum emitters depends on this field enhancement, mate-
rials with low damping rates, such as silver, are favoured. 
Another limitation on field enhancement comes from a further 
refinement to the permittivity, by considering the nonlocal  
response [108, 109]. Inevitably, as the dimensions of the plas-
mon supporting structures become smaller the bulk response 
(equation (12)) eventually fails as, for example, quantum con-
finement becomes important [110, 111]. 

A nonlocal description is needed, one that can account for 
the fact that for a fixed frequency ω the response of the metal 
will also depend on the effective wavelength, i.e. depend on 
the appropriate wavevector. The consequence of nonlocal 
effects that is of greatest interest in the context of strong cou-
pling is that of a reduction in the field enhancement that can 
be achieved when light is confined to truly nm dimensions, i.e. 
a reduction when compared to classical predictions. To bet-
ter understand the relevant physics a range of approaches have 
been taken to model the nonlocal response. One of the ear-
liest was to introduce a wavelength dependent damping term 
into the Drude model, see for example [110]. More elaborate 
changes to the hydrodynamic (Drude) approach are discussed 
by Moreau et al [112], the results of such models compare 
favourably with experiment [113]. There are alternatives to 
hydrodynamic models. Recent work using time-dependent 
density functional theory has been shown to be effective in 
modelling nonlocal effects [114]. Luo et al adopted an interest-
ing alternative by simulating a nonlocal response through the 
addition of an extra dielectric layer (with gain) on the surface 
of the metal [115]. The attraction of their approach is that it 
allows nonlocal behaviour to be simulated using a local the-
ory. What all of these works show is that nonlocal effects will 

ultimately place a limit on the strength of the coupling that can 
be achieved between SPPs and molecules, however this limit 
is not yet important for strong coupling, mode volumes are not 
yet small enough.

Let us return now to the dispersion of SPPs. A key feature 
to note from figure 4(c) is that the in-plane wavevector (and 
hence momentum of the SPP mode) is always greater than that 
of light propagating in the same plane. A direct consequence 
is that freely propagating light in the dielectric can not couple 
to the SPP mode. For coupling to occur some kind of momen-
tum-matching scheme is required. Several such schemes are 
available and include: prism coupling, grating coupling, near-
field coupling and non-linear coupling [116]. We will look at 
the first three of these schemes below, before doing so though 
we want first to discuss how the character of the SPP mode 
varies with the region of the associated part of the dispersion 
curve and introduce the way the presence of emitters may alter 
the dispersion.

Figure 4. (c) Surface plasmon-polariton dispersion curve, i.e. 
frequency of the SPP mode as a function of in-plane wavevector kx, 
i.e. wavevector along the surface in the direction of propagation 
(here chosen as the x-direction). The light-line (ω = ck0) represents 
light that propagates along the surface. Notice that the SPP mode 
is always to the high in-plane wavevector side of the light-line. 
Coupling can be achieved between an incident plane wave and the 
SPP mode through prism coupling, either in the Otto geometry (a) 
or the Kretschmann–Raether geometry (b). The triangle depicts 
the prism and the grey part the metal (not to scale since the metal 
film is typically only some tens to hundreds of nanometers thick). 
In the Otto geometry the SPP mode is created to the top of the 
grey part (i.e. air (or dielectric)—metal interface) and in the 
Kretschmann–Raether geometry to the bottom side of the grey part, 
again the air—metal interface (i.e. not the prism—metal interface). 
Thus the Kretschmann geometry can be used only for thin films. On 
the other hand, the adjustment of the air gap height to nanometer 
precision in the Otto geometry is difficult in practice. By measuring 
the reflectivity of p-polarised light (Rp) evidence for coupling to 
the SPP mode can be seen as a dip in the reflectance as the in-plane 
wavevector (angle of incidence θ) is scanned.
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2.1.1. The character of propagating SPP modes and the dis-
persion diagram. Let us first consider in more detail the 
SPP phenomenon for propagating SPP modes, especially as 
it relates to the dispersion diagram. The dispersion relation 
was given above for SPPs, equation  (10) and we will make 
use of the Drude model for the permittivity of the metal, equa-
tion (11) and take the dielectric half space to be vacuum (air). 
The dispersion relation can then be solved analytically to give 
(here k ≡ kSPP),

 ω
ω ω

= + ± +c k c k
2 4

.P P2 2 2
2

4 4
4

(13)

The solution has two branches, corresponding to the ± signs. 
For small values of the in-plane wavevector, k, the lower 
branch—the solution obtained by taking the minus sign in 
equation  (13)—behaves like light, i.e. the dispersion of the 
mode lies close to the light-line. For large values of k, the fre-
quency ω for this solution approaches ω / 2P . In this regime 
the SPP mode is very different from light, see figure 5. The 
upper branch, corresponding to the + sign in equation (13) is 
unphysical; one should not confuse the upper branch of equa-
tion (13) with what is usually called ‘upper branch’ in the con-
text of SPPs, namely the transverse wave propagating in bulk 
metal which has a dispersion ω ω= +c k p

2 2 2 2 (see e.g. chapter 
6, especially 6.2 in [117]).

In general, strong absorption at a particular frequency is 
likely to lead to changes in the dispersion curve, avoided cross-
ings and/or energy bands with no purely real solutions. These 
changes in dispersion correspond to changes in the character 
of the mode, it becomes more clearly hybrid in nature, con-
taining more of the character of the excitation associated with 
the strong absorption (a resonance). SPPs are hybrid modes 
of light and collective charge (plasmon) oscillations. In this 
sense the usual SPP dispersion is related to strong coupling 
phenomena: the bending of the dispersion is due to a reso-
nance in the system and indeed the SPP mode is a hybrid of 
the extreme ends (k = 0 and k = ∞) of the dispersion: light and 
plasma oscillations. Let us return now to the three means that 
we wanted to discuss by which light and SPP modes may be 
coupled.

2.1.2. Coupling light and propagating SPP modes. First, 
prism coupling makes use of attenuated total reflection, a 
phenomenon well known in optics. Turbadur [118] appears 
to have been the first to employ prism coupling to excite sur-
face plasmon polaritons (although it seems he did not know 
that surface plasmon polaritons were responsible for the phe-
nomenon he observed), but the technique became wide-spread 
following the work of Otto [119] and of Kretschmann and 
Raether [120] in 1968. Both the Otto and the Kretschmann and 
Raether schemes are shown schematically in figure 4. In the 
Otto configuration, figure 4(a), light is incident (from within) 
on the base of a glass prism. In glass of refractive index n light 
has a wavevector (momentum) that is enhanced over its free-
space value (k0) to nk0. When the angle of incidence on the 
base of the prism is greater than the critical angle, total internal 
reflection occurs. The optical field does not fall immediately 

to zero at the interface, rather an evanescent field is produced 
that decays in strength exponentially with distance from the 
prism base. If now a metal surface is brought up to within a 
wavelength or so of the prism base then the evanescent field 
that extends beyond the base of the prism (when total internal 
reflection occurs) may couple to the surface plasmon mode. 
By adjusting the angle of incidence the in-plane wavevector 
of the evanescent field may be adjusted to match that of the 
SPP mode (figure 4(c)). Light coupled into the SPP mode can 
couple back out by the same process, but the phase of this 
re-radiated light is out of phase with the specular reflection 
[121]. Power is instead eventually lost to heat in the metal 
film and, if the coupling is adjusted properly—through a care-
ful choice of the size of the air gap between the prism and 
the metal surface—a sharp dip in the reflectivity is observed 
figure 4(d). In the Kretschmann–Raether scheme, figure 4(b), 
a metal film is deposited directly onto the base of the prism 
and the evanescent field that is generated upon total internal 
reflection extends through the metal film to couple to the SPP 
mode on the metal surface away from the prism. In practice 
this is generally a more convenient approach than the Otto 
configuration, a metal of the required thickness (of order the 
skin depth in the metal) is easily made using vacuum deposi-
tion techniques and avoids the need for making a wavelength-
scale air-gap.

Second, in grating coupling the surface of the metal film is 
modified to take the form of a diffraction grating. For a suit-
able period of grating, diffraction can produce an evanescent 
diffracted order that is able to momentum-match to the SPP 
mode. As with prism coupling, when momentum matching 
happens the reflectivity falls, enabling the effect of coupling 
to the SPP mode to be monitored. Wood unwittingly observed 
such reflectivity dips more than a century ago [122]. The 
effect of a grating on the SPP dispersion curve is shown in 

Figure 5. The SPP dispersion (blue line) based on the Drude model 
for the metal and vacuum for the dielectric, equation (13). The SPP 
dispersion corresponds to a mode at a metal-dielectric interface. 
It approaches the light line (diagonal dashed line) for small 
wavevectors. When the dispersion approaches a resonance in the 
system, here the surface plasma frequency ω / 2P , the dispersion 
curve bends.
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figure 6. There are two things to notice. First, the SPP disper-
sion curve has now been replicated inside the light line, inci-
dent light can couple via diffraction to the SPP mode. Second, 
a gap opens up where the different scattered SPP modes cross, 
i.e. there is an anti-crossing. The gap is strong where counter 
propagating SPP modes can be linked by a first-order (±G) 
scattering process, region (a) in the figure; weaker where a 
second-order scattering process is required (±2G) (b), where 
G  =  2π/a, a being the grating period. One could view the 
anti-crossing behaviour as a form of strong coupling, as we 
alluded to above, section 2.1.1. The profile and amplitude of 
the grating determines the strength of the scattering/coupling 
[123]. Thus, in addition to enabling coupling of SPP modes 
and propagating light, periodic structures may also act to 
introduce band gaps in the dispersion (propagation) of SPPs 
[124]. In the context of strong coupling this is an interesting 
phenomenon since at the band edge the local density of opti-
cal states is high, enhancing light-matter interactions [125].

The metallic hole array is an extreme form of grating and is 
a key ingredient in accounting for the extraordinary transmis-
sion shown by some metallic hole arrays [126]. The diffrac-
tive nature of metallic hole arrays plays a key role in coupling 
light to the surface plasmon polaritons supported by such 
structures. Incident light couples to the SPP on the input side 
of the structure via grating coupling. As the incident light is 
scattered by the periodic structure it gains/looses momentum 
in the plane of the surface associated with the grating, i.e. it 
gains/looses a wavevector G. If the scattered light has an in-
plane wavevector that matches kSPP (at some wavelength) then 
incident light may couple to the SPP. The evanescent fields 
associated with the SPP span across the metal film and can be 
scattered by the periodic structure on the output side, thereby 
enabling the SPP to be scattered into transmitted light [127].

The complementary structure of the hole array is an array 
of particles, for example a periodic array of metallic nano-
discs. When the distance between particles is of the same 
order as the wavelength associated with the localised plas-
mon resonance, coherent effects are possible, notably lattice 
surface resonances [128, 129]. Such coherent effects are also 
interesting, offering rich opportunities for controlling light 
matter interactions.

Third, near-field coupling to SPPs is particularly important 
in the context of strong coupling between quantum emitters 
and optical modes. Consider an excited dye molecule placed 
close to a metal surface. In the near-field of such an emit-
ter the field-distribution has contributions that cover a wide 
range of wave-vectors, some of which will match that of the 
SPP mode. The near-field thus provides a pathway by which 
the excited molecule may couple to the SPP mode [130] and 
this coupling can be very efficient, depending on the distance 
between the emitter and the surface [131]. One might have 
assumed that closer is better, i.e. getting an emitter as close as 
possible to a metallic surface will maximise the effectiveness 
of coupling to an SPP mode. However, this is not the case. If 
the emitter is too close then its energy will predominantly be 
lost more directly as heat in the metal [131]. The optimum dis-
tance for coupling to SPPs is ∼10–20 nm for a planar surface 
[132] and more generally depends on the surface morphology 
[133]. The near-field provides the means that allows plasmon 
modes and emitters to couple and the strength of the coupling 
can be sufficient to allow strong-coupling to occur.

2.2. Localised surface plasmon polaritons

Plasmon modes can also be sustained by metallic nanostruc-
tures, a useful example is that of a nano-sphere. Light inci-
dent on a metallic nano-sphere will act to drive the mobile 
conduction electrons into oscillation. When electrons are 
displaced relative to the positive charge of the static cores, 
opposite sides of the sphere will take on opposite charges. The 
Coulomb interaction between these opposite charges provides 
a restoring force that, in common with all restoring forces, 
leads to a natural frequency of oscillation. When the incident 
light is of the same frequency, energy is coupled into the plas-
mon mode. Unlike the propagating SPP associated with the 
planar surfaces discussed above, there is no momentum mis-
match to overcome in this situation since the sphere breaks 
the translational invariance associated with the planar surface. 
As with the planar surface though, the fields associated with 
the plasmon mode are confined to the vicinity of the nano-
sphere, typically on a length scale comparable to the radius 
of curvature of the sphere, making them very useful in con-
fining light to sub-wavelength volumes. Gold nano-spheres 
formed the basis of the gold colloids studied by Faraday in 
the nineteenth century [134], the colours he observed arose 
from the plasmon modes supported by gold particles. Many 
other structures can support localised surface plasmon modes 
including rods, discs, holes and voids. These structures may 
support higher-order plasmon modes as well, especially as 
their size increases.

We have focused here on providing some basic background 
concerning surface plasmon polaritons and have concentrated 
on SPPs associated with planar surfaces and small metallic 
nanoparticles. Before we move on to look at the combina-
tion of SPPs and strong coupling we should perhaps note that 
the field of SPPs is still a fast moving and diverse field. SPPs 
are being used to guide energy, for example using metallic 
nanowires [135], to enhance the absorption of light [136] and 
to improve the efficiency of light-emitting diodes [137].

Figure 6. Surface plasmon-polariton dispersion curve for SPP 
propagation on the surface of a metallic diffraction grating. The SPP 
dispersion curve of the SPP, as for example shown in figures 4 and 5, 
is replicated at ± G, where G = 2π/a, a being the grating period. Where 
scattered modes cross on the dispersion diagram gaps may open up. 
This modified SPP dispersion is shown by the solid curved lines.
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Armed with this rudimentary knowledge of surface plas-
mon polaritons we are now better placed to look at the strong 
coupling between SPPs and matter.

3. Classical description of the strong coupling 
between SPPs and matter

In this section, we describe the strong coupling between 
SPPs and emitters when the dielectric in the vicinity of the 
metal (see section  2) contains emitters with a well defined 
absorption/emission spectrum. Whenever the frequency of 
light (SPPs) is close to an absorption frequency (ω0) the 
absorption will hinder the propagation of SPPs. Associated 
with this absorption there will be a slowing of the SPP (we 
assume we are on the low-frequency side of the absorption 
frequency) and a corresponding decrease of the group veloc-
ity dω/dk towards zero, causing bending of the dispersion. 
Approaching ω0 from above, the dispersion has to bend as 
well. However, in both cases the bending has to be such that, 
at all stages, dω/dk is less than or equal to the speed of light. 
Figure 7 illustrates this.

Next we consider the case when the absorption is due to 
emitters which are described as classical Lorentzian oscilla-
tors in the medium. This simple description is adequate to 
describe the basic physics of SPPs interacting with, e.g. mole-
cules, atoms, quantum dots etc located near the metal surface. 
A more microscopic, quantum mechanical description will be 
given later in section 5.

3.1. Strong coupling of SPPs and Lorentzian emitters

Let us consider the situation where we have emitters on top of 
the metal. As a practical example we could consider a polymer 
film containing molecules with a suitable optical absorption/
emission spectrum spin-coated on top of the metal. One could 
also think about individual emitters like quantum dots posi-
tioned or dispersed in the vicinity of the metal where the SPPs 
reside. We now consider this situation with a simple descrip-
tion which only takes into account classical electrodynamics. 
This description assumes that the molecule or other emitter 
can be described as a classical Lorentzian oscillator, i.e. that it 
can be described by the dynamics of an electron (upon which 
the polarizability of the molecule is based).

Let us consider an electron (of the molecule/emitter) of 
charge e and mass m as a harmonically bound, damped oscil-
lator that is driven by an electromagnetic (EM) field E(r, t): 
the problem of movement of a charge in an EM field. The 
equation of motion is

 γ ω¨ + ˙ + = −m r r r eE r t( ) ( , ) .0
2 (14)

Here ω0 is the frequency of the harmonic oscillator and γ 
describes damping. We consider for simplicity a 1D system. 
Within the usual dipole approximation, let us assume that the 
EM field is constant in r since the electron movement is small 
compared to the wavelength of the EM field. Furthermore, we 
assume the EM field is harmonic, i.e. E(r, t) = E0e−iωt. Then 

the steady-state solution becomes (this is easy to verify by tak-
ing the time-derivatives),
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The dipole moment of the electron motion is given by the 
product of its charge and position, thus we have,
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For a medium comprising many (N) dipole moments the mac-
roscopic polarization density (or simply polarization) P is 
defined as the average dipole moment per unit volume (V) and 
now becomes,

 ω ω γω
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Here N/V is the number density of dipole moments. Now, the 
macroscopic polarization is defined as,

 χ= ϵP E,0 (18)

where χ is the susceptibility. Thus the macroscopic electric 
susceptibility is,

 χ ω
ω ω γω
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2

0 0
2 2 (19)

The imaginary part of the susceptibility describes dissipation 
and gives the absorption coefficient of the material. In the 
limit ω ≫ γ and close to resonance we have,

Figure 7. The material wherein the propagating light mode resides 
absorbs at frequency ω0 (horizontal dashed line). Since light cannot 
propagate if it gets totally absorbed, the dispersion dω/dk that gives 
the group velocity of light has to approach zero, i.e. a horizontal 
line in this graph. Far from ω0, the dispersion follows the light 
line (diagonal dashed line) of the material. The type of bendings 
for which dω/dk always stays below the speed of light are marked 
with black lines: these are the expected solutions. The grey lines 
correspond to cases where the group velocity would become larger 
than speed of light. From these general considerations, we can 
anticipate what kind of behaviour the existence of emitters, with 
a clear maximum absorption frequency in the vicinity of the SPP 
modes, will lead to.
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Similarly, the real part becomes,
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The permittivity ϵ(ω) is related to the susceptibility through,

 ω χ ωϵ = +( ) 1 ( ) , (22)

and the refractive index consequently will have a real as well 
as an imaginary part, often denoted as n and κ, respectively. 
The relations of these to the real and imaginary parts ϵ′ and ϵ′′ 
of the permittivity are given by,

 κϵ′ = −n ,2 2 (23)

 κϵ ″ = n2 . (24)

Let us now look at the SPP dispersion as given in  
section 2, i.e.

 
ω= ϵ ϵ

ϵ + ϵ
k

c
.1 2

1 2
(25)

We aim first to obtain a set of analytical results to understand 
the basic phenomenon; later, numerical treatment is consid-
ered. Numerically, one could just substitute ϵ1 and ϵ2 into 
equation  (25) and obtain the dispersion, but there is quite a 
lot that one can do analytically, provided reasonable assump-
tions are made. First, let us consider the case where the metal 
dielectric function ϵ1 is assumed constant. This is true far away 
from the plasma frequency and provided we consider only a 
relatively small frequency range around the central frequency 
of the oscillator, ω0. Second, we use the fact that typically ϵ1 
for metals is negative and rather large in absolute value: even 
when ϵ2 has a Lorentzian contribution, i.e. can be reasonably 
large and positive, we assume that ϵ1 + ϵ2 always stays nega-
tive and furthermore, that the functional dependence of ϵ2 on 
frequency has negligible significance for ϵ1 + ϵ2, whereas in 
the numerator where it appears as ϵ1 ϵ2, ϵ2 influences the dis-
persion much more strongly. Based on these considerations, 
we may write the dispersion as,

 
ω χ ω= ∣ϵ ∣
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+k

c
(1 ( ) ) .2

2

2
1

1 2
(26)

We then scale the momentum to κ = ∣ϵ + ϵ ∣
∣ϵ ∣

k
c2 2 1 2

2

1
 to obtain,
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where we have written =
ϵ

A
Ne

V m

2

0
. Note that π ω=A4 p

2 2 

where ωp is the plasma frequency of the free electron gas. The 
physics we consider here is different from plasma oscillations. 
However, this connection arises because both in the present 
case and in the free electron gas, the parameters entering the 
model are e, m, ϵ0 and the density N/V and there is only one 

frequency that can be constructed from these on dimensional 
grounds.

Now consider first the dissipationless case γ  =  0. Then 

clearly 
ω ω

+
−
A

1
0
2 2

 must be positive for a real solution to 

exist. We can use this to define areas of no real solutions just 
as for the case of the SPP dispersion in section  2.1.1. The 

function 
ω ω

+
−
A

1
0
2 2

 is positive at plus and minus infinity 

and changes sign (in this section, we always consider posi-
tive ω and do not discuss −ω explicitly) at two places: first 

at ω = ω0 via infinity and then at 
ω ω

+
−

=A
1 0

0
2 2

 via zero. 

The latter equation  gives ω ω= +A 0
2 . Between these 

values the function is negative and no real solutions exist. 
There is thus something akin to a stop-band whose width is 
Δω ω ω ω= + − ≃A A / (2 )0

2
0 0 . This is not a genuine stop-

band since for the realistic γ ≠ 0 case there are solutions in 
this area, however, they are suppressed in amplitude. Note that 
if ω0  ∼  0 (rather unrealistic in optics), then Δω ~ A . The 
width of the stop band thus depends both on ω0 and A, extend-
ing between A  and A/(2ω0). We can thus anticipate that, 
just as for the SPP-plasma frequency case, the existence of 
an absorption maximum will produce an area without purely 
real solutions.

We see from the dispersion relation, equation (27), that an 
infinity in the dielectric function means infinity of κ and the 
zero point means κ = 0. Far away from ω0, one should recover 
the linear dispersion. The dispersion relation, equation (27), 
is shown in figure 8 for the case of no damping, γ = 0. Note 
that the size of the area with no real solutions is not usu-
ally used for characterizing the behaviour of the dispersion, 
since it refers basically to what happens for zero and infinite 
momenta. Namely, when k approaches infinity or zero in the 
nearly flat modes around the splitting, these modes cease to 
be well defined, due to damping [138]. This is illustrated in 
figure 8 by making the lines dashed. Instead, one usually char-
acterizes the avoided crossing by the splitting at resonance, 
i.e. at the point κ = ω0, see figure 8. We can calculate the size 
of this splitting from the dispersion.

For the sake of clarity, we will first present a simple 
approximative derivation and later an exact one (exact in the 
γ = 0 case). Let us write the dispersion relation, equation (27), 
in the following form,

 
κ ω κ ω

ω ω ω ω ω
+ − =

+ −
A( ) ( )

( ) ( )
.

2
0 0

(28)

Then we assume that ω (and thus κ) is quite close to ω0, so 
that one can approximate (κ + ω) ∼ 2ω0, (ω0 + ω) ∼ 2ω0 and 
ω ω~2

0
2. The equation then becomes,

 κ ω ω ω− − = A
( ) ( )

4
.0 (29)

This equation produces two solutions, corresponding to two 
normal modes, of the form,

 ω κ ω κ ω= + ± + −± A
2 2

1

2
( ) .0

0
2 (30)
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For very large and very small κ one can approximate the 
square root and see that the two solutions approach the light 
line of the SPP. But the larger the value of A and the closer 
one is to the resonance κ = ω0, the greater the distortion of 
the dispersion from the light line. The difference in the ener-
gies of ω+ and ω− at the resonance point κ = ω0 gives the so-
called normal-mode splitting, denoted by Ω. It turns out that 
this is similar to the vacuum Rabi splitting derived from fully 
quantum theory, as will be discussed below in section 5. At 
resonance (κ  =  ω0), one has ω ω= ± A / 20  which means 
that the normal-mode splitting (corresponding to the vacuum 
Rabi splitting) becomes,

 Ω = =
ϵ

A
N

V

e

m
.

0
(31)

The splitting is proportional to 
ϵ
e

m0
 and to the square root 

of the number density (concentration) of the emissive species. 
The quantum theory of strong coupling ([139] and section 5) 
gives exactly this dependence on the concentration of oscil-
lators (emitters). This means that the size of the splitting as 
a function of the density of oscillators does not allow us to 
distinguish between having quantized or classical fields, or 
between quantum (two-level system) or classical (Lorentzian 
oscillator) emitters.

Note that the other term in Ω, namely 
ϵ
e

m0
, is not specific 

to any atom or molecule but only depends on electron charge 
and mass. This is because our derivation was based on a sim-
ple bound electron picture. In general, in both the semiclas-
sical and quantum cases, the dipole moment specific to the 
atom/molecule as well as ℏ will appear in the expression for 
Ω. (It can be shown (see e.g. section 3.3 in [140]) that by cal-
culating the high-frequency asymptotic of the linear suscep-
tibility from quantum theory of the atomic/molecular dipole 

moment (the field still being classical) one obtains a result 
where the plasma frequency ω π π= = ϵA Ne V m4 4 / ( )p

2 2
0  is 

the only physical parameter appearing, that is, ℏ is missing 
and the system responds, at high frequencies and in the lin-
ear regime, as a classical free electron gas. But this is only 
the high-frequency asymptote far away from any resonance; 
in general, the quantum mechanical transition dipole moment 
specific to an atom/molecule as well as ℏ appear in the result in 
the semiclassical and quantum case.) In summary the N V/  
dependence shown here for the classical case will also appear 
the semiclassical and quantum treatments. However, the other 

factor in Ω will differ from 
ϵ
e

m0
. At this point we would like 

to note that sometimes when the classical susceptibility (19) 

is used in the literature, the 
ϵ

N

V

e

m

2

0
 term is replaced by 

ϵ
N

V

f e

m
0

2

0
 

where f0 is an oscillator strength. Some works further replace f0  
by the oscillator strength derived from a quantum mechanical  
two level system (e.g. using the relation f0 = 2mω0d2/(3ℏe2) 
[141] where d is the dipole moment of the two-level system) 

which leads to the splitting A  to be proportional to 
ω
ϵ ℏ

N

V
d0

0
.  

Such an approach can be considered semiclassical since it 
uses the quantum mechanically calculated oscillator strength 
(dipole moment). Indeed we will obtain this dependence for 
the splitting from the semiclassical treatment in section 5.1.

Now let us see what happens if we relax the approxima-
tions made above. Equation (27) can be solved exactly since 
it will have terms of fourth, second and zeroth order in ω. The 
result is (remember we consider only positive frequencies),
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(32)

At resonance we obtain (to prove the penultimate equality, 
take squares of both sides),

 Ω ω κ ω ω κ ω= = − =+ −( ) ( )0 0 (33)
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The exact result thus gives precisely the same result for the 
extent of the Rabi splitting at resonance as the approximate 
one. This can be seen in figure 9 where we show the normal 
modes calculated using the exact and approximate treatments, 
equations (32) and (30), respectively.

The calculations presented in this section  are similar to 
those in [142] (see also [143, 144]) where the possibility of 
surface plasmon polariton strong coupling was proposed for 
the first time although the calculations differ in some details, 
for instance the two solutions in equation (4) of [142] have an 

Figure 8. The dispersion of an SPP—emitter system as given by 
equation (27) is depicted by the black lines. The red lines are the 
emitter energy and the SPP dispersion, that is, equation (27) for A = 0. 
The black lines turning from solid to dashed reminds that, in case of 
finite damping, the nearly flat modes cease to be well defined further 
away from the crossing point. The parameter A was taken as ω0

2 here.
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implicit frequency dependence although the general form of 
the equation is similar to our result.

It is important to note that the existence of a splitting in fre-
quency implies the existence of dynamics in the time domain 
at frequencies that correspond to the splitting: in this case the 
coherent exchange of energy between the SPP field and the 
oscillators (emitters), see section 4.1.4.

3.2. Influence of damping on SPP-emitter strong coupling

Let us now consider the case of dispersion with damping, i.e. 
equation (27).
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The ω in the damping term iγω now causes this equation to 
have a third order term, thus it is difficult to solve in closed 
form, unlike the case γ = 0. However we can again apply the 
approximations (κ + ω) ∼ 2ω0, (ω0 + ω) ∼ 2ω0 and ω ∼ ω0 as 
above and obtain,

 κ ω ω ω γ− − − = A
( ) ( i / 2)

4
.0 (37)

The solutions are,

 ω κ ω γ κ ω γ= + − ± + − +± A
2 2

i
4

1

2
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and at resonance,

 ω ω γ γ= − ± −± Ai
4

1

2 4
.0

2
(39)

The presence of damping thus diminishes the size of the Rabi 
splitting.

So far, we have, for simplicity, treated the SPP mode as 
being loss-less. This, of course, does not correspond to real-
ity since the SPP modes are rather lossy, with linewidths cor-
responding to lifetimes of the order 10–100 fs [86, 87]. We 

can incorporate SPP losses in the analytical model considered 
here by replacing κ with κ − iγSPP/2. This gives the energies of 
the normal modes at resonance as,

 ⎜ ⎟
⎛
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⎠ω ω γ γ γ γ
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2 2 2
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This gives a strict condition ⎜ ⎟
⎛
⎝
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⎠

γ γ
− − >A
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0SPP

2

 to keep the 

term in the square root positive. But obviously, if γ ∼ γSPP, this 
is always valid. At first, this may look somewhat puzzling: can 
the decay constants indeed cancel each other inside the square 
root and thus perhaps produce a bigger Rabi splitting? This 
is, however, not quite the case. Namely, since the energies ω± 
are complex, we have to understand them as damped modes 

with linewidths characterized by 
γ γ

+
2 2

SPP  ; the new normal 

modes inherit the damping from both the SPP and the oscil-
lator modes. Now think about two Lorentzian (or Gaussian) 
distributions that have maxima and certain widths and are so 
close that they essentially overlap: the double peak maxima 
will not be at the maxima of the individual distributions, but 
at positions shifted towards the middle of the overlap region. 
Similarly here, the actual Rabi splitting will be clearly visible 
only if the difference in the real part of the energies, given 
by the square root term, is bigger than the widths of the new 

modes 
γ γ

+
2 2
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. The strong coupling condition is some-

times given also as 
γ γ

> +A
2 2

SPP  ; these two are obviously 

the same if γ ∼ γSPP. Thus we may write the strong coupling 
condition as
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Note that this should be understood more as an order of mag-
nitude condition: for two Lorentzian distributions separated 
by some distance (for instance [139] shows how strong cou-
pling leads to double Lorentzian form for the susceptibility), 
a double peak structure is visible even when the widths of 
individual distributions are slightly larger than the separation. 
Note that this is the case for Lorentzian distributions but no so 
much for Gaussians. One should always make a careful con-
nection from the complex normal modes (40) to the measured 
splitting, especially when aiming for precision measurements, 
broadening may change the measured value of the splitting. 
The main point to keep in mind, in general, is that although 
the condition required for strong coupling is often worded as 
‘the splitting has to be larger than the widths of the modes’, 
this is a rule of thumb and the actual measured splitting can be 
slightly smaller than the average width. Figure 2 of [39] nicely 
illustrates this.

The derivation presented here is similar to the cases of 
strong coupling in optical cavities and in semiconductor 
microcavity systems. We discuss here briefly the connection 
to some key literature in that context. Agranovich et al [138] 

Figure 9. Exact (blue) and approximate (red) normal modes 
as given by equations (32) and (30), respectively. The distance 
between the two branches at the resonance point κ = ω0 is exactly 
the same in both cases, as can be shown analytically.
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present a quantum and a classical theory for organic semicon-
ductors in microcavities. The derivation in the classical for-
malism starts from the dispersion of the transverse wave in the 
cavity, equation (2) of [138]. To within a number of constants, 
there is one-to-one mapping to the approximate derivation we 
have given (equations (29) and (37)) if we equate the cavity 
mode dispersion, their equation (1), with κ (i.e. the momentum 
scaled to include the SPP dispersion) in our case. The style of 
the derivation is the same: to search for the new normal modes 
explicitly. Sometimes in the context of cavities a slightly dif-
ferent approach is applied, see e.g. [24]: The total transmis-
sion or reflection of the cavity is calculated and it is shown to 
be dependent on the phase shift the light accumulates over a 
round-trip period in the cavity. In a Fabry–Perot type cavity, 
for instance, this phase has to have certain values (multiples of 
π) in order to obtain the constructive interference that defines 
the modes. When the emitter material is present in the cavity, 
the phase shift is in essence given by the corresponding refrac-
tive index, which can be modelled by a Lorentzian oscillator, 
as we have done here. This leads to non-trivial behaviour of 
the phase shift and eventually to an energy splitting visible in 
the transmission (reflectance) of the cavity. The basic physics 
of strong coupling is exactly the same, although the style of 
formulating the problem is different. The particularities of the 
cavity can be thought to have the same role as the specifics of 
the SPP dispersion here.

Note that the polarization is proportional to the electric 
field E through,

 ω ω γω
=

− −
P

Ne

Vm
E

1

i
.

2

0
2 2 (42)

In the presence of a resonant mode, such as an SPP or micro-
cavity mode, the appropriate field in the above equation  is 
the enhanced field. The combination of strong confinement 
(defining V) of the electric field and the high concentration 
n  =  N/V of molecular dipole materials (such as those to be 
described below) makes strong coupling between SPP modes 
and many quantum emitters easy to observe even with open 
cavities such as simple flat metal films, as we will see later. 
One of the attractive features of plasmonics is that deeply sub-
wavelength effective volumes can be achieved. The question 
of whether the volume can be made small enough to see strong 
coupling with a single emitter naturally arises. We should note 
that for the highly concentrated emitter materials typically 
used, reducing the volume will keep n = N/V constant since as 
the volume is reduced so is the number of emitters it contains. 
Only when a reduction in volume is such that the number of 
emitters does not decrease in proportion will n  =  N/V rise. 
This will require very small mode volumes, achieving the 
single emitter limit, N = 1, may be possible by using specially 
tailored SPP modes.

3.3. Abandoning the simplifications: numerical treatment of 
SPP strong coupling

We used several simplifications in the above treatment. We 
assumed a simple Lorentzian oscillator, although the line-
shapes of various emitters are often more complicated. 

Furthermore, we assumed that only the term ϵ1ϵ2 in equa-
tion (25) gives an interesting frequency dependence and took 
ϵ1 + ϵ2 to be constant. We also assumed the dielectric constant 
of the metal to be independent of frequency. This might to 
some extent be valid near the resonance ω0 if the resonance 
is sufficiently narrow. However, we made these and other 
approximations simply to obtain analytical results to guide 
understanding. To describe experiments, one usually has to 
use a numerical treatment. One can take the SPP dispersion,
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and use the measured, tabulated values for ϵ1(ω), e.g. from 
[145–147] and the ϵ2(ω) describing the dielectric emitter 
material. Both dielectric functions will be complex, so damp-
ing will be taken into account. Often the emitter material is 
characterized by its absorption spectrum: one may find the 
absorption spectrum from the literature or measure it directly. 
In order to obtain the real part of the electric susceptibility 
from the absorption/extinction spectrum, one can use the 
Kramers–Kronig relations. The absorption spectrum α(ω) is 
proportional to the imaginary part of the refractive index, κ. 
The real part, n, can be calculated using the Kramers–Kronig 
relations:

 ∫ω
π

ω κ ω
ω ω

ω= + ′ ′
′ −

′
∞

n P( ) 1
2 ( )

d ,
0 2 2 (44)

where P denotes the principal value. The real and imaginary 
parts of the susceptibility are then given by equations (22)–
(24). The appendix of the book [140] provides a nice Matlab 
code for using the Kramers–Kronig relations. Note also that 
the SPP dispersion given above is just the simple formula for 
the interface of two infinite half-spaces. For more compli-
cated structures, e.g. several layers, one can use a Fresnel-
type calculation for the reflectivity spectrum, using the 
susceptibility for the material layer that contains the oscilla-
tors and obtain strong coupling phenomena. In figure 10, we 
present an example of a numerical simulation of the reflec-
tance of a silver film covered with an absorbing film, using 
experimentally realistic values.

As a final note on the classical theory of strong coupling 
we would like to point out the following. It has long been 
known (at least since [24]) that a large number of field-matter 
interaction experiments displaying strong coupling, i.e. split-
tings in the energy spectrum, can be equally well described by 
a classical or a quantum theory. Note, however, that the clas-
sical and quantum treatments and their respective results are 
not exactly the same. One difference originates from the fact 
that a first order time derivative appears in the Schrödinger 
equation and a second order derivative typically in classical 
equations of motion. Therefore the dielectric susceptibility of 
a classical oscillator is of the form ω ω ωγ− −1 / ( i )0

2 2  whilst 
that of a corresponding quantum oscillator (a two-level sys-
tem) would have a susceptibility of the form 1/(ω0 − ω − iγ). 
(Also saturation effects make a difference, as will be discussed 
in section 5.) Above, with some dirty tricks, which are justifia-
ble close to ω = ω0, we could make the classical susceptibility 
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to look like this (equations (29) and (37)) and then same phe-
nomenology as from the quantum case follows; a motivation 
for doing such approximations is indeed to relate the quantum 
and classical cases. Note, however, that in certain issues the 
quantum and classical theories give exactly the same result, 
a notable example is the size of the splitting at the resonance 
and its N V/  dependence. Exactly at resonance, i.e. when 
ω = ω0, both ω − ω0 (quantum) and ω ω−2

0
2 (classical) van-

ish, so that the difference between the first and the second 
order derivative does not play a role. However, the stronger 
the coupling, the larger are the deviations of the exact classical 
normal modes from the approximate ones (which are the same 
as those given by quantum theory) (see figure 9). One can ask 
whether at some point the predictions of the exact classical 
theory for the dispersion curves start to considerably deviate 
from the approximate ones (which are the same as given by 
quantum theory). Another issue is the size of the splitting. Here 
the factor multiplying N V/  is in essence the dipole moment 
of the oscillator. The dipole moment can be derived from first 
principles using classical or quantum theory. It would be inter-
esting to test a microscopic quantum mechanical prediction 
for the size of the splitting through experiment, the concentra-
tion N V/  would need to be accurately known. We will come 
back to this issue and whether it has been considered in the 
reported SPP strong coupling experiments in section 5.3 after 
the fully quantum description of strong coupling has been pre-
sented. In that section, we discuss the details of the quantum 
mechanical prediction for the size of the splitting.

3.4. A note on detecting strong coupling in plasmonics using 
reflectometry measurements, including a discussion about 
back-bending

To understand the physics of the SPP + emitter system, we 
would like to know the dispersion, that is we would like to 
know the function ω(k). Measuring the reflectance, as dis-
cussed in section 2, provides a convenient technique for this 

purpose. If a mode exists for a certain frequency and wavevec-
tor, incident light may be coupled into the system and a corre-
sponding reduction in the reflectance may occur. Most recent 
work in which splittings are determined from reflectance data 
are based on examining the reflectance when plotted as a full 
dispersion curve, i.e. plotting the reflectance as a 2D data set 
in ω  −  k space, such as that shown in figure  10. Note that 
one should not work in ω − θ space, as was pointed out by 
Symonds et al [148].

Historically it was often easier to record a set of angle or 
wavelength scans, especially before the ready availability 
of imaging spectrometers. Experimentalists often faced the 
choice of recording data by sweeping the in-plane wavevector 
(angle, θ) for a fixed frequency of incident light, a k-scan, or 
sweeping the frequency for a fixed in-plane wavevector (more 
often fixed incident angle), an ω-scan. As seen figure 11, the 
presence of an anti-crossing (splitting) is better seen in the 
latter case.

There is another subtlety related to reflectometry meas-
urements which is relevant in understanding the early experi-
mental results concerning the strong coupling regime and 
which highlights the value of plotting the reflectance as a 2D 
data set in ω − k space. If angle-scans for a number of fixed 
wavelengths are conducted there is the possibility of observ-
ing what looks like back-bending, see figure 11. In the early 
experiments [79, 149] by Pockrand et al only angle scans are 
reported and back-bending of the modal dispersion is evident. 
However, in [150] both angle and wavelength scans were car-
ried out and it was shown that back-bending in the former is 
connected with having a splitting in the latter (although the 
reason for the difference was not discussed). The back-bending 
was originally also called ‘anomalous dispersion’. However, 
as the word anomalous hints, the back-bending is not a true 
modal dispersion; the back-bent curve originates simply from 
the finite linewidth of the split modes, in the region of the gap 
they overlap. This can be seen by considering separately the 
case of holding the frequency fixed and scanning the angle 

Figure 10. Numerically calculated reflectance of a metal film (thickness 50 nm) and an absorbing film on top (thickness 30 nm). 
Reflectance is calculated in a Kretschmann–Raether configuration. The permittivity of the absorbing film is obtained from measured values 
for 200 mM concentration of Rhodamine 6 G (R6G) in PMMA and the data for silver permittivity is from [145].
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and the case of fixing the angle and scanning the frequency. 
The former case corresponds to collecting data along the hori-
zontal lines in figure 11(f): then data points in the split region 
may appear as maxima since there is some signal there due 
to the finite linewidth of the modes. See e.g. the third from 
lowest horizontal dashed line in figure  11(f). The crosses in 
the figure depict the maxima determined from data taken in 
this way. The case of fixed angle and a wavelength (frequency) 
scan, on the other hand, is illustrated in figure  11(e): where 
the data points in the split region appear as minima since each 
scan also encompasses the modes. The crosses indicating max-
ima appear now only along the modes, not in the split region 
between them. Mathematically speaking, a saddle point may 
look like a minimum or a maximum depending on the direction 

one crosses the saddle point. Note that if one plots the whole 
data set, e.g. with a colour scale the problem, as noted above, 
no longer arises; it is when only the minima are plotted that 
the difference arises. (Similar care is needed in examining the 
surface plasmon-polariton band gaps discussed in section 2.1 
[123].) The difference between wavelength versus angle scans 
in reflectometry measurements, in presence of losses, has also 
been discussed in the context of the bare (without emitters) SPP 
dispersion where an avoided crossing/back-bending appears at 
the UV regime due to properties of the metal dielectric func-
tion [151]. Although the origin of the feature in the dispersion 
is different from the emitter strong coupling, the reason why 
one type of measurement produces back-bending and other 
one not is the same as discussed here.

Figure 11. (a)–(b) Reflectance plotted as a function of: left column, frequency (energy) versus in-plane wavevector; and right column, 
frequency (energy) versus incident angle. Due to the mapping k = (2π/λ) np sin θ in reflectometry experiments, points corresponding to one 
k-vector but different frequencies become shifted with respect to each other in an angle plot. The Rabi splitting/normal mode splitting Ω is 
determined as the difference of the two branches at the resonance point, see (a). Attempting to determine the splitting Ω′ from the angle-
plot will lead to an overestimation of the splitting, see (b). (e)–(f) The vertical/horisontal lines depict wavelength (frequency)/angle scans, 
respectively: the minima determined from these scans differ as shown by the black crosses in (e)–(f). Finite linewidth of the normal modes is 
required for this difference to arise. (c)–(d) Distortions of the dispersion when approaching strong coupling, but splitting not yet being visible 
like in (c), may lead to slight back-bending see (d) when the results are shown as an angle-plot with angle-scan used for plotting minima.
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Concerning the earliest papers on the topic, it is of interest 
to ask whether any observed back-bending (in angle-scans) 
actually implies strong coupling. This is not necessarily the 
case: one can consider a situation where there is no clear split-
ting between the two branches, but already some broadening 
and reshaping of the mode structure near the resonance point, 
see figures 11(c) and (d). If such a system were probed by the 
angle-scanning technique, back-bending might be visible in 
the evolution of the minimum. Thus the back-bending does 
not necessarily imply strong coupling, but it does indicate that 
the strong coupling regime is near since the dispersion has 
become distorted.

Finally, we note that the effect of the damping is to result in 
a complex wavevector or, a complex frequency. The question 
of which approach to adopt depends on what kind of questions 
one wishes to ask. As noted by others [69, 152], a complex 
wavevector is more appropriate when time-independent phe-
nomena such as reflectance and transmittance measurements 
are concerned. In the numerical calculations of figures 10 and 
11 complex wavevectors were used whereas the analytical 
results presented in this review use both complex frequencies 
and wavevectors to describe damping.

4. Review of the experiments

Before looking at the coupling between SPPs and different 
molecular electronic states in detail, we should mention some 
early work. Agranovich and Malshukov appear to have been 
the first to predict splitting phenomena of the kind discussed 
here [142]. The first observation of surface polariton splitting 
appears to be that due to Yakovlev et al [153], who looked at 
how the lattice vibrations (TO phonon mode) of a thin over-
layer of LiF modified the surface phonon-polariton mode sup-
ported by an underlying rutile (TiO2) substrate. Although the 
work of Yakovlev et al concerned phonon-polaritons rather 
than plasmon-polaritons, the similarity of the resulting disper-
sion curves and of much of the underlying physics, makes this 
an important historical reference point.

4.1. J-aggregated systems

Strong coupling between the excitonic absorption resonances 
of dye molecules and surface plasmon polaritons came a few 
years later, it was first observed by Pockrand et al [150] who 
looked at cyanine-based J-aggregated dye molecules depos-
ited on a silver film. J-aggregates of cyanine dyes are self-
organised molecular crystals and have partially delocalised 
excitons that have narrow, red-shifted absorption bands when 
compared to that of the dye monomer. The higher oscilla-
tor strength of J-aggregates results from the way the dipole 
moments associated with many molecular units act coherently, 
providing an effective ‘super’ moment [154]. Something simi-
lar has been suggested to explain strong coupling results for 
quantum dots in cavities [155]. Pockrand et al used the attenu-
ated total reflection (ATR) technique (Kretschmann–Raether 
prism-coupling) to observe strong coupling between the SPP 
mode supported by the silver film and the exciton mode of 

the J-aggregates, finding a splitting of 70 meV (3%). These 
authors stressed the importance of the details of the measure-
ment process, as we discussed in section 3.4. This work came 
after Pockrand and Swalen had shown that a squarylium dye 
deposited onto a silver film resulted in back-bending of the 
SPP dispersion curve [149]. Again, as noted in section 3.4, 
whether strong coupling or back-bending is seen depends to 
some extent on the details of the measurement process.

In what follows we look at strong coupling using 
J-aggregated molecules in the context of different kinds of 
SPP modes: propagating SPP modes on planar metal surfaces, 
SPP modes on nano-structured metal films and localised SPP 
modes associated with metallic nanoparticles.

4.1.1. Propagating surface plasmon-polaritons. The initial 
work of Pockrand et al [150] was followed up more than 20 
years later by Bellessa et al [71] who showed evidence of 
strong coupling, based on reflectivity measurements that had 
been compiled into a dispersion diagram—an anti-crossing of 
180 meV was observed. In addition these authors also looked 
at how the luminescence from the J-aggregates was modi-
fied by the strong coupling. In common with experiments on 
J-aggregates in microcavities [47] they found that the lumi-
nescence tracked the position of the lower polariton branch, 
but there was no evidence of the upper polariton branch in the 
emission. Bellessa et al attributed this lack of upper polari-
ton branch emission to uncoupled excitons. A detailed study 
by Agranovich et al suggests that a significant fraction of the 
J-aggregates are not coupled because they involve incoherent 
states that do not couple to polariton modes [156].

In more recent work Symonds et al looked in more detail at 
SPP—J-aggregate strong coupling for planar metal surfaces, 
examining J-aggregated systems [148] and excitons based 
on a mixed organic-inorganic system [148, 157]. As noted 
above, these authors made the important point that in evaluat-
ing the extent of the (energy) splitting associated with strong 
coupling, i.e. the extent of the anti-crossing, it is important to 
look at data where the in-plane wavevector is held constant 
and the frequency swept [148]. In doing so they noted that 
trying to evaluate the splitting from fixed angle scans can lead 
to an overestimate of the splitting by a factor of up to 2; see 
figures 11(a) and (b) where this issue is illustrated.

As noted in sections 3, 5 and 5.3 of this review, the extent 
of the splitting depends on a number of factors, including the 
spectral width (damping) of the plasmon mode involved and 
the number density of J-aggregated molecules. Balci et al 
[158] looked at both of these aspects in an arrangement very 
similar to Pockrand et al [150]. They varied the concentration 
of J-aggregates in the host PVA layer, finding that, as expected 
(see sections 3, 5 and 5.3, e.g. equation (31)) that the extent of 
the splitting was proportional to the square root of the concen-
tration of the molecules. Balci et al [158] also showed that the 
width (damping) of the SPP mode influences the extent of the 
splitting; to do this they varied the thickness of the silver film.

4.1.2. Surface plasmon-polaritons on nanostructured metal 
surfaces. We have focussed so far on SPPs associated with 
flat metal films, prism coupling being used to allow incident 
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light to be coupled to the SPPs. Periodically modulated 
surfaces may also be used when the period is of order the 
wavelength of light—grating coupling. Symonds et al [148] 
showed that a traditional diffraction grating type surface could 
be used successfully to explore strong coupling, their (sinu-
soidal profile) grating being produced by an embossing tech-
nique. Vasa et al [97, 98] used focussed ion-beam milling to 
produce rectangular profile gratings and also observed strong 
coupling between SPP modes of these structures and J-aggre-
gated molecules placed in an adjacent layer. A full discussion 
of the results of Vasa et al will be deferred until later since 
their focus was on strong coupling dynamics. Dintinger et al 
looked an alternative nano-structured metal surface, a sub-
wavelength hole array [72]. Again J-aggregates were intro-
duced by spin coating a layer of J-aggregate doped PVA onto 
the hole array. Dintinger et al explored the strong coupling in 
two ways. First, they varied the array period, allowing the in-
plane wavevector to be varied as a consequence of scattering 
arising from the presence of the grating (hole array): second, 
they varied the angle of incidence. In both cases a splitting 
was observed. They also showed that the extent of the splitting 
varies with the square root of the absorbance (concentration) 
of the aggregated molecules, finding a maximum splitting 
of ∼250 meV (∼14%).

4.1.3. Localised surface plasmon-polaritons. Strong cou-
pling between localised surface plasmon-polaritons and 
J-aggregated molecules was investigated in 2006 both theoret-
ically by Ambjornsson et al [159] and experimentally by Sug-
awara et al [74]. Sugawara et al exploited the localised modes 
associated with spherical nanovoids, structures that they pro-
duced by electrochemical deposition of gold through a tem-
plate of self-assembled latex spheres. Once the metal had been 
deposited the latex spheres were chemically removed to leave 
metallic voids, the J-aggregated molecules being added by 
drop-casting. Localised SPP modes are more often explored 
in plasmonics for metallic nanoparticles rather than voids. 
Fofang et al [77] looked at gold nanoshells coated with a layer 
of J-aggregated molecules. They observed splitting associated 
with both the dipolar plasmon mode and the quadrupolar plas-
mon mode of the nanoshells. They also increased the loading 
of the dye molecules in the surface of the metallic shell to 
demonstrate the effect of concentration on the extent of the 
splitting, but the splitting observed saturated very quickly, 
something they suggested resulted from a limitation of their 
fabrication approach.

Wurtz et al [75] coated arrays of densely packed gold 
nano-rods with J-aggregates. They also observed significant 
splitting (∼14%) and noted that the use of plasmon modes 
associated with nano-rods offered a good way to control the 
coupled system since the plasmon modes are easily controlled 
through rod size (and rod proximity). These authors attributed 
their results to the strong coupling of the J-aggregated mol-
ecules with the L-mode (dipole-dipole interaction mediated 
collective mode) of their nanorod assembly.

More recently Bellessa et al [78] looked at the case of peri-
odic arrays of metallic nanoparticles by using electron-beam 
lithography to produce the particle arrays, the J-aggregate 

film being deposited directly on the array by spin-coating. 
They found a large splitting of  ∼450  meV (∼20%), which 
they attributed to a high concentration of molecules in these 
samples. These authors also conducted a set of measurements 
and analysis of the linewidths of the two polariton branches 
in the vicinity of the anti-crossing, showing that the widths 
of the individual modes (which are quite different) take the 
same value at the anti-crossing point, providing a further 
demonstration of the hybrid nature of the modes at this point. 
We note that these authors also saw significant evidence of 
uncoupled excitons in their data. This is to be expected since 
they placed J-aggregated molecules across their samples, but 
the optical fields associated with the plasmon modes of the 
nanoparticles only extend a limited distance from the particles 
[160] and the nanoparticles are spatially separated by much 
more than this distance. (Note that aggregates being spatially 
located outside the field associated with the plasmon mode is 
not the only reason that excitons may not contribute to strong 
coupling, there may also be a significant fraction of excitons 
that do not take part because they are associated with incoher-
ent states [156, 161]). Strong coupling of J-aggregates with 
individual metallic dimers was observed in [162] and with 
individual nanorods [163].

Having looked at the time-independent properties 
of strongly coupled systems involving SPP modes and 
J-aggregated molecules we now turn our attention to the 
dynamic behaviour in J-aggregate strong coupling.

4.1.4. Dynamics in J-aggregate strong coupling. So far we 
have focussed on the spectral response of coupled plasmonic-
emitter systems, we turn our attention now to dynamics. The 
primary method of probing the dynamics of many photo-
physical systems is that of pump-probe spectroscopy (see for 
example [164]). Vasa et al used pump-probe spectroscopy to 
investigate samples comprising J-aggregate layers deposited 
onto gold gratings [97]. They first showed that strong cou-
pling was present in such systems, an anti-crossing appear-
ing on their dispersion diagram, a diagram produced using 
experimentally determined reflectivity data, anti-crossing 
appearing where the grating-scattered SPP mode crossed the 
exciton absorption. They then looked at transient changes to 
the reflectivity (ΔR/R) using pump-probe spectroscopy, find-
ing a nonlinearlity, i.e. pump intensity dependent response 
as measured through ΔR/R that they attributed to bleaching 
of the exciton absorption. (Schwartz et al point out that care 
should be exercised in interpreting ΔR/R type data if the sam-
ples under investigation also transmit light, a better measure 
in such circumstances is to determine the (transient) change in 
absorption [165].) These investigations of nonlinear behaviour 
stop short of demonstrating oscillations in the time-domain 
that are expected if Rabi oscillations are taking place.

In what is probably the most extensive investigation so far 
of the dynamics of SPP-based strong coupling, Vasa et al used 
pump-probe spectroscopy to observe temporal oscillations in 
their measured ΔR/R data [98]. Through comparison of their 
transient reflectivity data with simulations of the time evolu-
tion of the exciton and SPP population densities, the authors 
suggest that the oscillations they see are a direct manifestation 

Rep. Prog. Phys. 78 (2015) 013901



Report on Progress 

20

of Rabi-oscillations; some of their data are reproduced in 
figure 12. As these authors point out in their supplementary 
material, there are many subtleties to consider if their data 
are to be fully understood. The major challenge in observing 
these oscillations is that the decay times for plasmon modes 
are very short ∼100 fs. Rabi oscillation times thus have to be 
even shorter if they are to be observed. Here the advantage of 
J-aggregates becomes apparent. The large splitting that may 
be achieved, e.g. 200 meV, allows oscillation times as short 
as  ∼20  fs to be produced, short enough to be seen against 
the plasmon decay. The effect of electron tunneling on sin-
gle emitter strong coupling in plasmonic nanostructures has 
been theoretically investigated [166], indicating that such tun-
neling processes may act to prevent the observation of strong 
coupling.

4.2. Dye and photochromic molecules

According to the basic theory of strong coupling, the line-
widths of the absorption/emission resonance and the optical/
plasmonic mode should be smaller than the strength of the 
coupling in order to clearly observe strong coupling phenom-
ena, that is, for the avoided crossing in the dispersion to be 
visible, see the formula introduced in section 3.1,
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One would thus anticipate that strong coupling is possible 
only for molecules with a narrow absorption spectrum, such 
as the J-aggregates discussed above. However strong coupling 
has also been observed between SPPs and molecules with a 
broad absorption spectrum. Why this is possible is still a ques-
tion requiring further study, taking into account microscopic 
details such as the vibrational level structure of the molecules. 

Of course, one may utilize the large oscillator strengths of cer-
tain molecules as well as high concentrations N/V to make 
the left hand side of the inequality (45) large. Furthermore, 
one should keep in mind that splittings even slightly smaller 
than the average linewidth can be observed, especially for 
Lorentzian profiles, as discussed in section  3.2. One more 
important issue is that the broad spectra of dye molecules con-
sist of a set of underlying vibrational states, often leading to 
essentially Gaussian absorption/emission spectra.

In this context it is interesting to mention the work [167] 
where strong coupling for a set of inhomogeneously broad-
ened oscillators was considered both quantum mechanically 
and classically. (For homogeneous broadening the linewidth 
of the ensemble is the same as that of any individual oscillator 
(emitter) because they all have the same resonance frequency. 
In contrast, for inhomogeneous broadening the linewidth of 
the ensemble is dominated by the fact that each oscillator has 
a slightly different resonance frequency.) Intriguingly, it was 
shown that the new normal modes formed via strong coupling 
have the homogeneous linewidths of the individual oscillators 
rather than the width related to the inhomogeneous broaden-
ing. The effect of the inhomogeneous broadening was only to 
produce a set of states within the energy split caused by strong 
coupling. One could speculate that the vibrational states in 
molecules are similarly a set of inhomogeneously broadened 
emitters; note that the linewidths of individual vibrational 
states are much smaller than the typical absorption and emis-
sion linewidths of the molecules and usually of Lorentzian 
line shape.

In the early studies of Pockrand et al [79, 149] materi-
als such as a monolayer of squarylium [149] or cyanine [79] 
dye combined with Cd-arachidate were used on top of sil-
ver films. These dyes have an absorption spectrum width of 
about 75 meV for the cyanine [150]. This compares with the 
J-aggregate widths reported in later literature of 45–70 meV 
and that of Rhodamine 6  G (main peak) discussed below 
of about 180  meV. Reflectometry measurements were per-
formed and results of angle scans (see section 3.4) for each 
frequency were shown. References [79, 149] report only angle 
scans, showing back-bendings of the reflection minima curves 
obtained from the angle scans. As discussed in section  3.4, 
back-bending is not firm evidence of strong coupling; instead 
it means that the system is either in the strong coupling regime 
or approaching it. Only in [150] (who used J-aggregates) both 
angle- and wavelength-scans were presented, the latter dis-
playing a clear splitting and thus confirming the presence of 
strong coupling. Inspired by this, the attention of the research 
community was focused on J-aggregates for the next 27 years. 
The first clear observation of prominent strong coupling for 
SPPs and molecules with a broad absorption spectrum was 
reported in 2009 [80].

Hakala et al [80] undertook two types of experiment. First, 
silver films coated with a PMMA polymer film containing 
Rhodamine 6G (R6G) dyes were studied using reflectrometry 
in the Kretschmann–Raether configuration, see section  3.4. 
The dispersions showed clear avoided crossings, the size of 
the crossing increasing as the square root of the molecular 
concentration, as expected according to theory, equation (45). 

Figure 12. The measured differential reflectivity of a J-aggregate-
coated gold grating. For the experimental conditions used the 
splitting was ∼100 meV. Clear oscillations of period ∼45 fs are seen 
in the differential reflectivity associated with the upper branch (UP) 
and the lower branch (LP). Reproduced with permission from [98].
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Splittings up to 230 meV were observed. In the second type 
of experiment, silver waveguides of transverse and longitudi-
nal sizes of a few microns were fabricated and polymer areas 
(containing dye molecules) of different lengths were fabri-
cated on different samples. SPPs were launched at one end 
of the waveguide, passed through the polymer area and the 
spectrum at the end of the polymer covered area was recorded. 
It was observed that the size and visibility of the splitting was 
increased for increased length of the polymer area, figure 13. 
For propagating SPPs, the long polymer area corresponded to 
a longer interaction time with the molecules. One can under-
stand a short interaction time as a large effective damping γ 
which according to equation (40) decreases the Rabi splitting. 
Thus the variation of length of the polymer area had to be 
less than the propagation length of the SPP which gives the 
intrinsic damping of the SPP; only lengths shorter than this 
are able to increase the damping even further. The results of 
[80] are presented in figure 13; these result have since been 
reproduced [168, 169].

In [92], strong coupling between dye (Rhodamine 6G) 
molecules and the plasmon modes supported by an adjacent 
islandised metal (Ag) film was observed. The novelty of this 
work was that they also looked at the enhancement of the 
Raman signal from the dye. They found the Raman signal to 
be correlated with the strong coupling, observing a maximum 
Raman signal when a polariton mode matched the Stokes-
shifted emission band of the dye. Raman enhancement due to 
SPP—dye molecule strong coupling has been observed also 
in [170].

An interesting feature of R6G is that it has strongly over-
lapping monomer and dimer (aggregate) absorption and emis-
sion bands [171, 172]. Moreover, the monomer absorption and 
emission spectra have a double-peaked structure (i.e. a main 
peak and a shoulder). This double-peaked structure of the 
monomer may be modified and enhanced by the presence of 
aggregates at high molecular concentrations. Avoided cross-
ings between both the main absorption peak and the shoulder 
with SPPs were observed in [80], indicating the formation of 
hybrid states involving three oscillators: two electronic—the 

main transition (i.e. the main peak) and shoulder peak of the 
dye system; and one that is plasmonic, the SPP.

Strong coupling between SPPs and a number of other 
molecular systems having broad absorption spectra has 
recently been demonstrated, for instance with dyes such as 
Rhodamine 800 [95], Sulforhodamine 101 [96], Nile Red 
[173] and even bio-molecules such as beta-carotene [174]. A 
systematic study of several different dyes (Rhodamine 640, 
cresyl violet 670, malachite green, oxazine 720 and 725, 
methylene blue, DOTCI, HITC) coupled with Au nanorods of 
various sizes (∼50–100 nm) and shapes was pursued in [175]. 
Due to the inhomogeneous size distribution of the nanorods 
and other difficulties they were not able to observe clear split-
tings in the spectra. However, from the shift of the low-energy 
branch the strength of the coupling could be estimated. It was 
found that pH and metal ions could be used for reversible con-
trol of the shift.

Very recently, R6G molecules were shown to strongly cou-
ple with surface lattice resonances in arrays of metal nanopar-
ticles [81, 93]. Regularly organized metal nanoparticles may 
display, in addition to the localized single particle resonances 
(LSPR) surface lattice resonances (SLR) corresponding to the 
diffraction orders of the periodic structure [88–90, 176, 177]. 
In previous SPP strong coupling studies, on one hand, the 
effect of periodicity of the nanostructure has been considered 
(see section  4.1.2), on the other hand strong coupling with 
localized SPP has been studied (section 4.1.3). Väkeväinen et 
al [81] focused on the interplay between the effects of perio-
dicity and of the localized modes. The mutual couplings of 
the localized LSPR, the periodicity-dependent SLR and the 
molecular exciton resonances were systematically studied by 
experiments, numerical simulations and by coupled dipole 
approximation theory. The observed splittings followed the 
expected square root of the molecular concentration depend-
ence and were of the order ∼150 meV for the highest con-
centrations. One concentration was used in [93] and similar 
numbers were obtained. Since the SLR is a collective, delocal-
ized mode, the results mean that molecules located near dis-
tant nanoparticles are coherently coupled. The array systems 

Figure 13. (a) Silver waveguides with molecule-containing polymer areas of different lengths were fabricated in [80]. SPPs were launched 
via one molecular area (the disk) and spectra were recorded at the end of the rectangular polymer areas. (b) With increasing length of the 
area, splittings develop in the spectra (red 1 µm, green 2 µm, blue 5 µm, black 5 µm with silver on top (inset of (a)). These are in good 
correspondence with the positions where the splittings emerge in the dispersions obtained by reflectometry (red, green, black dots for 4, 25, 
50 mM molecular concentrations, horizontal grey lines mark the R6G absorption main and shoulder positions and the orange the emission 
main peak). Thus in addition to the concentration, the strong coupling can be controlled by effective interaction time determined by the 
length of the polymer area. Reproduced with permission from [80].
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offer long coherence lengths with the possibility of tailoring 
the field-matter coupling e.g. by the shape of the nanoparticle. 
Furthermore, the SLR can have very narrow lineshapes, the 
Q-factors can be an order of magnitude more than for propa-
gating or localized SPPs.

Another interesting class of emitters is that of photochro-
mic molecules. Photochemical effects can be used to induce 
conformational changes in these molecules which in turn 
alters the coupling between the molecules and optical fields. 
This control enables reversible switching from the weak—
through to the ultrastrong-coupling regime (for a discus-
sion of ultra-strong coupling see section  5.2 below) using 
all-optical control [85]. In [85], spiropyran molecules were 
used and transformed by UV light into the merocyanin forms 
for which the dipole moment is large. Strong coupling was 
observed in two types of systems: for low-Q metal microcavi-
ties the size of the splitting was about 700 meV (32% of the 
molecular transition energy) and for a plasmonic hole-array 
about 650 meV (30%). Reversible switching between weak 
and strong coupling was also demonstrated in [178] between 
porphyrin excitons and surface plasmons, where control of the 
strength of the dipole moment was achieved by exposing the 
molecules to NO2 gas; splittings of 130 meV were observed. 
Another demonstration of switchable strong coupling with 
spiropyran molecules was given in [179], where the molecules 
were strongly coupled to the localized surface plasmon modes 
of silver nanoparticles.

Strong coupling results in the system having new normal 
modes and energies. This modification of the energy landscape 
may be used to control chemical reactions, as was done in [9]. 
There, instead if an SPP resonance a low-Q metallic micro-
cavity was used to provide the resonant light mode. We men-
tion this non-SPP strong coupling result here because of the 
important implications of the concept of modifying chemical 
landscapes by strong coupling. The reaction considered in [9] 
was the formation of merocyanin (MC) from the spiropyran 
(SPI) form of the molecules under UV illumination. The MC 
ground-excited state excitation was close to the cavity reso-
nance, causing strong coupling. The consequent splitting of 
the energies of MC modified the chemical energy landscape 
connecting the two isomers SPI and MC. Modification of the 
SPI to MC photoisomerization reaction was observed both 
by optical transmittance measurements and by pump-probe 
(150 fs pump) spectroscopy.

4.3. Quantum dots

Organic molecules offer a variety of advantages, relative ease 
of manipulation and strong dipole moments, especially among 
the laser dyes. The downside of organic molecules is that they 
are prone to bleaching and thus will not endure high optical 
intensities easily. On the other hand, combining the strong 
coupling regime with high intensity excitation could reveal 
a lot of interesting physics and applications. Therefore it is 
of interest to consider emitters that might avoid the bleach-
ing problem. One possibility is quantum dots, also known as 
semiconductor nanocrystals. A related option are epitaxially 
grown quantum well materials where shifts (∼7 meV) of the 

quantum well exciton energies have been observed [180] due 
to coupling with SPP modes. Describing the experimental data 
by a coupled-oscillator model predicted couplings of 50 meV.

Strong coupling between SPPs on planar silver films and 
colloidal CdSe quantum dots was experimentally demon-
strated in [82]. Reflectometry measurements were used and 
the splitting observed was 112 meV. The results are illustrated 
in figure  14. In a later work, the same group demonstrated 
also a double split originating from the SPP mode coupling 
strongly with two different excitonic modes of the quantum 
dots (the sample contains quantum dots of two different sizes 
providing the two excitonic modes) [83]. This corresponds to a 
hybrid of three modes and is similar to the double split seen in 
[80] where the two excitonic modes were the R6G main peak 
and shoulder, see the dispersions shown in figure 13. Also the 
dynamics of the quantum dot—SPP system has been studied 
by steady-state and transient reflectivity measurements in the 
Kretschmann geometry [181] by the group of [82, 83]. It was 
observed that the dynamics is fast whenever the lower hybrid 
state has predominantly SPP character while when it is pre-
dominantly excitonic the dynamics are slower, resembling the 
typical time scales of the CdSe quantum dots.

It should be noted that, although quantum dots are in many 
ways emitters with desirable properties, there are fewer reports 
of strong coupling with quantum dots and SPPs. Moerland et 
al [182], reported only weak coupling regime even under quite 
high quantum dot densities and large excitation light powers. 
In the brief review article [183] on exciton-plasmon interac-
tions in metal-semiconductor nanostructures the examples 
of studies of colloidal or epitaxial quantum dots in the weak 
coupling regime are numerous but in the strong coupling case 
there are only a few. The quantum dots used in the successful 
demonstrations [82, 83, 181] were made by the authors fol-
lowing the approach of [184].

4.4. Strong coupling and spatial coherence

As explained above, the splittings in dispersions, characteris-
tic of strong couping, have been firmly observed for a variety 
of emitter systems coupling with surface plasmon modes and 
even dynamics have been explored. If the new hybrid modes 
are linear, coherent combinations of the original modes, they 
should carry the properties of the original modes: in particu-
lar the spatial coherence characteristics of an extended light 
mode. Another way to put this same argument is: in presence 
of strong coupling, spatially distant emitters should oscillate 
in phase, creating long-range spatial coherence in the sample. 
Dispersion measurements alone cannot directly test spatial 
coherence properties. To be conclusive, one needs to show that 
coherence appears in proportion to the weight of the light mode 
in the hybrid. Spatial coherence of SPP-emitter systems in the 
strong coupling regime was demonstrated by Aberra-Guebrou 
et al [99]. This work showed that spatial coherence exists in 
the strong coupling regime (a different system, namely quan-
tum dots, was given as the weak  coupling reference). To prove 
the connection of the spatial coherence with the weight of 
the light component of the hybrid mode requires a systematic 
study of coherence throughout the weak-to-strong coupling 
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crossover: this was done by Shi et al [94]. In [94] the spatial 
coherence properties of a system composed of periodic silver 
nanoparticle arrays covered with fluorescent organic mole-
cules (DiD) were studied by employing a double slit experi-
ment. The molecule concentration was gradually increased to 
investigate both the strong and the weak coupling coherence 
properties within the same system, see figure 15. Significant 
spatial coherence lengths in the strongly coupled system are 
observed even when the mode is very exciton-like. The evolu-
tion of spatial coherence was shown to be directly connected 
to the hybrid mode structure, providing conclusive evidence 
for the hybrid nature of the normal modes in strongly coupled 
surface plasmon—emitter systems.

5. Quantum description of strong coupling

In this section we will first describe strong coupling phenom-
ena in the semiclassical description, section  5.1. There the 
emitter has a quantum nature, that is, it is described as a two-
level system governed by the Schrödinger equation, but the 
field is still a classical electromagnetic field. The ultrastrong 
coupling regime is briefly discussed in section  5.2. In sec-
tion 5.3, also the field is quantized. Section 5.1 is based on ele-
mentary one-particle quantum mechanics which we assume 
the readers of this review are familiar with. The quantization 
of the electromagnetic field which is the basis of the treatment 
in section 5.3 in principle requires knowledge of many-parti-
cle quantum physics and the technique of second quantization 

[185]. However, we simply present the results without going 
through their derivation and describe the main physics in the 
hope that it is understandable also without a background in 
quantum optics.

5.1. Semiclassical: a quantum emitter interacting with a  
classical field

Let us describe the emitter as a quantum two-level system  
(a spin-half system) with an excited state ∣e〉 and a ground 
state ∣g〉, with corresponding energies Ee and Eg (this is just 
a notation, ∣g〉 can be any electronic state not only the actual 
ground state). We choose Ee > Eg. The field, which in our case 
is the electromagnetic field of the SPP mode, is described 
by the field amplitude E cos (ω t)eik · r. Here ω and k are the 
frequency and wavevector of the SPP mode, respectively, as 
given by the SPP dispersion, e.g. such as in equation (10) and 
in figures 4 and 5 for a planar metal, or in figure 6 for a peri-
odic structure. The vector E contains the field amplitude and 
the polarization vector of the field. Note that it is essential 
to have a well-defined mode which is narrow enough in fre-
quency: damping is not included here, but in the end of this 
section  we will discuss how it can be included. In general, 
the mode function can be more complicated than the simple 
plane wave eik · r that we consider here, however, the following 
derivation can easily be adapted to more complicated forms.

We apply the standard dipole approximation, that is, 
assume that the displacement of the electrons in the emit-
ters (atoms/molecules/quantum dots) due to the field is much 

Figure 14. (a) Reflectivity spectra of a Ag/CdSe film with nanocrystals of ∼4.3 nm in diameter, for different angles. (b) Normal incidence 
absorption spectrum of a film of the CdSe nanocrystals. The vertical line indicates the exciton transition. (c) Experimental dispersion curve 
(dots). The green line is the energy of the uncoupled SPPs, the red line corresponds to the position of the exciton transition and the orange 
lines are obtained from a fit to a coupled oscillators model, giving a splitting of ∼102 meV. Reprinted with permission from [82]. Copyright 
2010 American Chemical Society.

(a) (b)

(c)
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smaller than the inverse of k and thus we can approximate 
eik · r ≃ eik · R, where R is the center-of-mass coordinate of the 
emitter. For an emitter at a fixed location (i.e. it does not feel 
the light field as a mechanical force) this is not relevant to the 
two-level dynamics and we can choose R = 0 for simplicity. 
This approximation should in general be valid, although it is 
exactly in plasmonics where one might find systems where it 
brakes down [186], for instance quantum dots with extended 
electronic states interacting with extremely localized SPP 
fields.

We first consider a single quantum emitter interacting with 
the field, a discussion on the many emitters case follows later. 

We use a vector basis where the excited state is ∣ ⟩ =( )e 1
0

 and 

the ground state ∣ ⟩ =( )g 0
1

. Transitions from the ground to 

the excited state are then provided by the matrix ⎜ ⎟
⎛
⎝

⎞
⎠σ =+

0 1
0 0

 

and the inverse process by ⎜ ⎟
⎛
⎝

⎞
⎠σ =−

0 0
1 0

. The energies of the 

states can be expressed using ⎜ ⎟
⎛
⎝

⎞
⎠σ = −

1 0
0 1z  and the unit matrix  

⎜ ⎟
⎛
⎝

⎞
⎠=I 1 0

0 1
. The Hamiltonian describing the energy of the  

system is

 σ σ Ω σ σ ω= + + − + ℏ ++ −H E E tI I
1

2
( )

1

2
( ) ( ) cos ( ) .e z g z 0

(46)

Here Ω0 is the semiclassical Rabi frequency which is propor-
tional to the dipole moment times the field amplitude, Ω0 = − d · 
E/ℏ. If you are interested in the derivation of this Hamiltonian 
from microscopic principles, the Chapters 3.2–3.3 of [187] 
and 2.2 of [188] are recommended. To connect with the clas-
sical treatment of section  3, we denote (Ee  −  Eg)/ℏ  ≡  ω0. 
We now perform the so-called rotating wave approximation 
(RWA) (for more information see the above mentioned chap-
ters) in which we first make a unitary rotation of the basis (in 
quantum mechanics, this does not change the physics) by mul-

tiplying the wavefunctions by the term 
⎛
⎝
⎜

⎞
⎠
⎟=

ω

ω−U e 0
0 e

t

t1

i /2

i /2

0

0
.  

Consequently, this transformation has to be applied to the 
Hamiltonian as well, i.e. =− †U HU U HU1 1

1
1 1 . Expressing fur-

thermore the cosine term as cos (ω t) = (eiωt + e−iωt)/2 one ends 

up having terms of the form e±i(ω − ω
0
)t and e±i(ω + ω

0
)t in the 

transformed Hamiltonian. The RWA accounts for neglecting 
the terms containing (ω + ω0)t since they describe off-resonant 
processes and ω + ω0 is a much higher frequency than other 
frequencies characterizing the dynamics, such as ω − ω0 or 
Ω0. The approximation is good reasonably close to resonance 
ω ∼ ω0 and when Ω0 is not of the same magnitude as ω and 
ω0. It is important to note that this assumption becomes ques-
tionable in the ultrastrong coupling regime, discussed in sec-
tion 5.2, where the Rabi frequency Ω0 is comparable to ω. The 
signifigance of the so-called counter-rotating terms e±i(ω + ω

0
)t 

should be then considered. Here, however, they are neglected. 
Finally, to obtain a convenient form of the Hamiltonian, 
one more unitary transformation will be applied namely 

⎛
⎝
⎜

⎞
⎠
⎟=

δ

δ−U e 0
0 e

t

t2

i /2

i /2
 where δ  =  ω  −(Ee  −  Eg)/ℏ  =  ω  −  ω0. 

Thus the total transformation made is UT = U2U1; the actual 
Hamiltonian in the new basis will contain the transformed 
Hamiltonian plus an extra term coming from the Schrödinger 
equation  since the transformation UT is time-dependent 
(similarly as the Hamiltonian in the interaction picture is 
the total transformed Hamiltonian minus the non-interacting 
Hamiltonian (e.g. Chapter 3.1 in [187])). After these changes 
of basis, sometimes referred to as expressing the problem in a 
rotating frame and the RWA, the Hamiltonian becomes

 
δ σ Ω σ σ= − ℏ + ℏ ++ −H

2 2
( ) .z

0
(47)

In the literature, the detuning is sometimes defined the other 
way round from our choice, namely as transition frequency 
minus field frequency, then of course the minus sign in front 
of the first term is absent. Furthermore, sometimes −Ω0 is used 
instead of Ω0 which is a trivial difference and only exchanges 
the labeling of the eigenmodes. The two times two matrix 
Hamiltonian (47) is easy to diagonalize and has the eigenvalues

 δ Ω= − ℏ +E
1

2
1

2
0
2 (48)

 δ Ω= ℏ +E
1

2
,2

2
0
2 (49)

Figure 15. (a)–(d) Spatial coherence images for a silver nanoparticle array covered by a DiD molecule film of different concentrations: 
0 mM means no molecules and the increasing concentration means increasing coupling. White colour corresponds to transmission 
maximum. Interference is observed throughout the weak to strong coupling crossover and the emergence of strong coupling is visible in the 
bending of the dispersion (yellow line) matching the interference features. (e) A sample having a random distribution of nanoparticles with 
800 mM DiD concentration shows no interference fringes. Two transmission minima are seen at 1.85 eV and 2.25 eV, corresponding to 
DiD absorption and the single particle plasmon resonance, respectively. Reproduced with permission from [94].
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where the so-called generalized Rabi frequency

 Ω δ Ω= +2
0
2 (50)

appears. For writing down the eigenstates, we denote

 θ Ω δ
Ω δ Ω

= −
− +

cos
( )2

0
2 (51)

 θ Ω
Ω δ Ω

=
− +

sin
( )

.0

2
0
2 (52)

With this definition, the eigenstates (the so-called dressed 
states) are

 
θ θ

θ θ
| ⟩ = − | ⟩ + | ⟩
| ⟩ = | ⟩ + | ⟩

e g

e g

1 sin cos
2 cos sin .

(53)

Or inversely,

 
θ θ
θ θ

| ⟩ = | ⟩ + | ⟩
| ⟩ = − | ⟩ + | ⟩
g

e

cos 1 sin 2
sin 1 cos 2 .

(54)

If the system is initially in the ground state, we can express 
its state as a superposition of the new eigenstates: from equa-
tion (54) we have ∣g〉 =  cos θ∣1〉 + sin θ∣2〉. Then the time evo-
lution of the state will be easy since the eigenstates evolve 
with the eigenenergies: the time-dependent wavefunction of 
the two-level system is

 
Ψ θ θ γ

γ

∣ ⟩ = ∣ ⟩ + ∣ ⟩ ≡ ∣ ⟩

+ ∣ ⟩

− ℏ − ℏt t g

t e

( ) cos e 1 e sin 2 ( )

( ) ,

E t E t
g

e

i / i /1 2

(55)

where γg(t), γe(t) can be calculated using equation  (53) 
and become γg(t)  =   sin 2θ e−iE2t/ℏ  + cos 2θ e−iE1t/ℏ and 
γe(t) =   sin θ cos θ e−iE2t/ℏ − sin θ cos θ e−iE1t/ℏ. The time-evolu-
tion of an initial excited state and of any superposition of the 
ground and excited states can be calculated in a similar way.

To understand these results intuitively, let us consider the 
case on resonance, i.e. when the field and the transition energy 
are the same, δ = 0. Then one has

 ∣ ⟩ = ∣ ⟩ + ∣ ⟩e g2
1

2
[ ] (56)

 ∣ ⟩ = −∣ ⟩ + ∣ ⟩e g1
1

2
[ ] (57)

 
Ω= − ℏ

E
2

1
0

(58)

 
Ω= ℏ

E
2

.2
0

(59)

This means that the eigenstates of the system are actually 
an equal superposition of the ground and the excited states. 
Furthermore, the time-evolution for an initial ground state is 
of the form

 Ψ Ω Ω∣ ⟩ = ∣ ⟩ − ∣ ⟩t t g t e( ) cos ( / 2) i sin ( / 2) ,0 0 (60)

that is, the system performs Rabi oscillations between the 
ground and the excited states. At resonance the frequency of 

these oscillations becomes the Rabi frequency Ω0 (the fre-
quency is Ω0 not Ω0/2 since the probablity of being in the ground 
state is Pg  =  ∣〈g∣Ψ(t)〉∣2  =   cos 2 (Ω0t/2)  =  (1  + cos (Ω0t))/2)). 
Away from resonance, Rabi oscillations take place at the gen-
eralized Rabi frequency Ω and are smaller in amplitude.

We can now compare the eigenenergies of equations (48) 
and (49) to the normal modes derived in the classical case of two 
coupled oscillators, equation (30) (or (32) for the less approxi-
mate result). The classical and semiclassical results seem to 
have something in common: in both cases, the two (normal 
mode/eigenmode) energies are separated by a square root term 
that contains the detuning squared, here denoted δ2 and in the 
classical case (κ − ω0)2 and another factor, here Ω = ·d E( )0

2 2 
and = ϵA N V e m( / ) ( / )0

2 in the classical case (one should 
consider a single emitter N = 1 to have a direct comparison 
here). At resonance, the splitting becomes in the semiclassical 
case Ω0 which is the dipole moment times the field amplitude 
and in the classical case ϵe V m/ 0 . Now, there seems to be a 
puzzling difference: in the classical case the splitting is inde-
pendent of the field amplitude, whereas in the semiclassical 
case it is proportional to it, that is, the Rabi frequency and the 
splitting vanish for a vanishing field. But actually, this is not 
the right way of making the comparison; we present it only in 
order to emphasize the point that the splitting derived in the 
classical case comes from the dispersions where the proper-
ties of the oscillator went in to the description only inside the 
refractive index, that is, in the first order (linear) susceptibil-
ity. The treatment thus basically only describes linear response 
to the field: all non-linearities i.e. higher order susceptibilities 
are neglected. In contrast, here in the semi-classical description 
we presented the exact solution of the dynamics of a two-level 
atom interacting with the classical field which naturally takes 
into account all orders of the field-matter interaction.

The above issue is further explained by deriving the equiv-
alent of the classical dielectric susceptibility χ, equation (19), 
from the above semiclassical exact solution. For that, one has 
to calculate the quantum mean value (i.e. expectation value) 
of the induced electric dipole moment

 Ψ Ψ⟨^ ⟩ = ⟨ ∣^ ∣ ⟩D D , (61)

where Ψ is the superposition state of the excited and ground 
states at time t, as given by equation (55) (we assume here that 
the two-level system is initially in the ground state). The result 
becomes (here we follow the derivation and notation in [188], 
for details see e.g. section 2.4.3. therein)

 γ γ⟨ ^ ⟩ = * +ω−D d e c. c. ,i i e g
ti 0 (62)

where di is the dipole matrix element = ⟨ ∣ ^ ∣ ⟩d g D ei  (i = x, y, z). 
Polarization Pi is defined as the dipole moment per unit vol-

ume V, now ⟨ ^ ⟩D V/i . Let us consider N emitters that interact 
with the same coherent field. A pumped system is assumed 
here such that the ground state (‘ground’ has to be under-
stood as merely a label here) is pumped with the rate Λg and 
both states g and e decay with a rate γ. Then, before turning 
on the field that causes Rabi oscillations, we have a steady 
state Ng = Λg/γ and Ne = 0 and afterwards Ng + Ne = N = Λg/γ. 
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The total polarization is obtained by integrating the quantity 
Λ ⟨ ^ ⟩t D Vd /g i0  over time, weighted by a factor that describes 
the decay with rate γ (here Λgdt0 is the number of atoms in 
state g during the time interval t0, t0 + dt0):

 ∫Λ
= ⟨ ^ ⟩ γ

−∞
− −P

V
t Dd e .i

g t

i
t t

0
( )0 (63)

The integral gives (using also ℏΩ0 = − d E0 and assuming iso-
tropic system with polarization parallel to the electric field)

 
ω ω γ

γ Ω ω ω
=

ℏ
− +

+ + −
+ω−N

V
P

Ed i

( ) 2
e c. c.t

2
0

2
0
2

0
2

0 i (64)

This is now very close to the polarizability of the classical oscil-
lator case, see equation (17). The difference is the (ω − ω0)2 
(Schrödinger equation) versus ω ω ω ω ω− ≃ −( ) 2 ( )2

0
2 2

0 0
2 

(classical EOM; Maxwell’s equations) as already discussed. 
Another difference is the term Ω0

2 in the denominator of equa-
tion  (64): this comes from the quantum two-level nature of 
the emitter and describes saturation. However, for weak field 
intensities it is negligible. Importantly, what is the same is the 
dependence on the concentration N/V. We can now insert this 
polarizability to the dispersions as we did in equation (27) of 
the classical calculation and obtain the normal mode split-
ting that is proportional to the square root of concentration. 
Furthermore, the splitting becomes (just relate the suscepti-
bility from equation (64) to the approximate classical calcu-
lation presented earlier) proportional to a term that contains 
the quantum mechanical dipole moment of the transition as 
well as ℏ, namely ω ϵ ℏd / ( )0 0 ; this is to be compared to 
the classical dipole moment ϵe m/ 0  of our simple classical 
Lorentzian model. Thus indeed the semiclassical treatment 
gives the same result as the classical one when it comes to 
the dependence of the splitting on the concentration and the 
same qualitative result for the dependence on a term that con-
tains the dipole moment. This derivation was for the case of 
both states g and e decaying with γ; the case where g does not 
decay could be treated similarly.

The semiclassical description raises some intriguing ques-
tions: Obviously, the individual atoms perform Rabi oscilla-
tions with the frequency Ω0 = − d E0/ℏ which goes to zero 
when the field goes to zero. Nevertheless, the semiclassical 
description also leads to a splitting in the linear absorption 
spectra that is not proportional to the field but just to d N V/ .  
Will there be any dynamics related to the frequency propor-
tional to d N V/  ? This question was asked already in [24]. 
Their answer, consistent with experimental data, was that in 
a linear system, time- and frequency domains are connected 
by a Fourier transform and thus a Fourier transformation of 
an input pulse Ein(ω) would be connected to the output pulse 
Eout(ω) by the transmission function of the system t(ω)

 ω ω ω=E t E( ) ( ) ( ) .out in (65)

If now t(ω) contains a double peak structure due to the normal 
mode splitting (originating from a linear polarizability of the 
type of equation (64)) then Eout(ω) will inherit a similar struc-
ture, which means that in the time-domain Eout(t) will display 
oscillations corresponding to the splitting frequency.

Thus in the semiclassical description, the normal mode 
splitting and related dynamics, for N atoms is not simply N  
times the Rabi frequency describing the ground-excited state 
Rabi oscillations of individual atoms. However, the N-atom 
normal mode splitting and dynamics can be obtained in the 
linear limit of the individual atom behaviour when the atoms 
are driven by a coherent field (i.e. all atoms that start their 
oscillation simultaneously remain oscillating in phase). 
Especially for the single emitter N = 1 this is clear: the linear 
absorption splitting is proportional to d but the frequency of 
Rabi oscillations is proportional to E0d. If N atoms perform 
such oscillations in phase, the linear absorption shows a split-
ting that is proportional to the square root of the emitter con-
centration and the dipole moment.

To distinguish between the classical and semiclassical 
cases, one could try to observe saturation effects, but that 
might be tricky because other non-linearities may step in. 
The other option would be to probe the difference caused by 
the classical versus quantum equations of motion, but as dis-
cussed in section  3.1, see especially figure  9, it produces a 
minor effect. One more idea is to have a value for the dipole 
moment that is either calculated from first principles quantum 
mechanically, or measured for known quantum emitters and to 
show that the size of splitting matches the quantum estimate 
of the dipole moment rather than the classical estimate.

5.2. Ultrastrong coupling

The ultrastrong regime is characterized by a coupling (here 
Ω0  =  −  d E0/ℏ) of the same order of magnitude as the fre-
quency of the oscillator and the field (here ω and ω0). In that 
case, the rotating wave approximation (RWA) is not justi-
fied and one should consider also the counter-rotating terms 
e±i(ω + ωeg)t neglected above since the time-scales of the dynam-
ics related to the coupling will be now similar to the time-
scales of these terms. The ultrastrong coupling regime is 
extremely difficult to achieve for traditional quantum optics 
systems such as single atoms in high-finesse cavities. On the 
other hand, the Dicke quantum phase transition, described 
by the Dicke Hamiltonian that includes the counter-rotating 
terms, was experimentally observed in a system of a Bose–
Einstein condensate coupled to an optical cavity [189]. With 
superconducting circuits the ultrastrong coupling regime has 
been realized by enhancing the inductive coupling between a 
flux qubit and a resonator by using an additional Josephson 
junction [190]. It was also noticed that this regime can be sim-
ulated with a standard strongly-coupled qubit-resonator sys-
tem in a rotating frame, under certain conditions for driving 
(see [191] and references therein). For SPPs, there have been 
recently observations of normal mode splittings that approach 
the magnitude of the field frequency [85].

It is important to note that the inclusion of the counter-
rotating terms may not be the only thing to worry about when 
describing systems in the ultrastrong coupling regime. For 
instance issues related to the use of the Coulomb gauge have 
been recently discussed in this context, see e.g. [192] and the 
references therein. It is beyond the scope of the present review 
to provide a proper theoretical description of the ultrastrong 
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coupling physics, we simply note that there are some subtle 
issues to consider here and that one should be wary of overly 
simplistic treatments.

5.3. Fully quantum: a quantum emitter interacting with a 
quantized field

Let us first briefly present the results for the quantized field 
and the single emitter; the real subtleties related to recent SPP 
experiments will be mentioned with the many-emitter case 
treated later. In the case of the single emitter, the equivalent of 
the Hamiltonian (47) becomes within the RWA

 ω σ ω σ= ℏ + ℏ ^ ^ + ℏ ^ +†
+H a a ga

1

2
( h. c.) .z0 (66)

This is a generic form of the Hamiltonian for a quantized field 
interacting with a two-level system, the so called Jaynes–
Cummings Hamiltonian (see e.g. chapter 13 of [187]). Here g 
is proportional to the dipole moment and â is the annihilation 
operator describes the quantized field, i.e. it corresponds to 
the destruction of a photon, ^†

a  corresponds to the creation of 
a photon. The Hamiltonian H only couples the states ∣e〉∣n〉 
and ∣g〉∣n + 1〉 where n refers to the photon number, i.e. one 
photon is emitted/absorbed when the atom makes a transition 
between the ground and the excited states. Therefore one can 
write the Hamiltonian as (remember that the state of the light 
field may have a distribution of photon numbers)

 ∑=H H .
n

n (67)

In the basis = | ⟩ | ⟩( ) e n1
0

, = | ⟩ | + ⟩( ) g n0
1

1 , the Hamiltonian 

Hn is

 ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ω

δ
δ

= ℏ + + ℏ − +
+

H n
g n

g n

1

2
1 0
0 1 2

2 1

2 1
n

(68)

 δ ω ω= − .0 (69)

Now diagonalizing equation  (68) one obtains the following 
eigenvalues:

 ⎜ ⎟
⎛
⎝

⎞
⎠ ω δ= ℏ + − ℏ + +E n g n

1

2

1

2
4 ( 1)n1

2 2 (70)

 ⎜ ⎟
⎛
⎝

⎞
⎠ ω δ= ℏ + + ℏ + +E n g n

1

2

1

2
4 ( 1) ,n2

2 2 (71)

where we can define the generalized Rabi frequency of the 
quantum case as

 R δ= + +g n4 ( 1) .n
2 2 (72)

For writing down the eigenstates, we denote,

 
R

R
θ δ

δ
= −

− + +g n
cos

( ) 4 ( 1)
n

n

n
2 2 (73)

 
R

θ
δ

= +
− + +

g n

g n
sin

2 1

( ) 4 ( 1)
.n

n
2 2

(74)

With this definition, the eigenstates (the dressed states) are,

 θ θ| ⟩ = − | ⟩ | ⟩ + | ⟩ | + ⟩n e n g n1 sin cos 1n n (75)

 θ θ| ⟩ = | ⟩ | ⟩ + | ⟩ | + ⟩n e n g n2 cos sin 1 .n n (76)

On resonance, i.e. when the field and the transition energy are 
the same, δ = 0, we have,

 | ⟩ = −| ⟩ | ⟩ + | ⟩ | + ⟩n e n g n1
1

2
[ 1 ] (77)

 | ⟩ = | ⟩ | ⟩ + | ⟩ | + ⟩n e n g n2
1

2
[ 1 ] (78)

 ⎜ ⎟
⎛
⎝

⎞
⎠ ω= ℏ + − ℏ +E n g n

1

2
1n1 (79)

 ⎜ ⎟
⎛
⎝

⎞
⎠ ω= ℏ + + ℏ +E n g n

1

2
1 .n2 (80)

This means that the eigenstates of the system are an equal 
superposition of the ground state + one extra photon and the 
excited + no extra photon.

Now we see a clear contrast to the semiclassical case: there 
is a splitting in the spectrum even for n = 0 which means zero 
photons when the emitter is in the excited state and one photon 
when it is in the ground state. This is called the vacuum Rabi 
splitting and its existence is attributed to the electromagnetic 
vacuum fluctuations. Moreover, the system has a discrete set 
of states and splittings that are given by consecutive photon 
numbers n = 0, 1, 2, ...: this is called the Jaynes–Cummings 
ladder. The system now shows Rabi oscillations just like the 
semiclassical single 2-level system, but within a certain n, 
n + 1 manifold and with a frequency that has a non-zero value 
even for zero photon number. For a distribution of photon 
numbers, one would expect to see averaged dynamics.

Let us now go to the many-emitter case which is the one 
relevant for all existing SPP strong coupling experiments. 
Consider N two-level systems. The Hamiltonian becomes

 ω ω= ℏ ^ + ℏ ^ ^ + ℏ ^^ +†
+( )H S a a gaS

1

2
h. c.eg z (81)

where collective two-level operators ∑ σ^ =
=

Sz
i

N
z
i

1
( ) and 

∑ σ^ =+ = +S
i

N i
1

( ) have been introduced. This is the so-called 

Dicke Hamiltonian. It is also known as the Tavis–Cummings 
Hamiltonian. It can be analytically solved and it has an inter-
esting, rather complicated energy level structure, see e.g. 
[193] and the model displays phase transitions.

Instead of the full solution of the Dicke model, it is common 
in various light-matter interaction contexts to take the limit 
where the total number of emitters N is large but the number of 
excited emitters is small (in other words low photon numbers/
intensities exciting the system). The practicality of this limit 
can be seen by doing the Holstein–Primakoff transformation 
to the collective spins. The Holstein–Primakoff transformation 
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in general maps spin-systems (such as two-level atoms) to 
bosonic systems. In the present case, it accounts for

 ̂ = ^ − ^ ^ ^ = − ^ ^ ^ ^ = ^ ^ −+
† †

−
† †

S b N b b S N b b b S b b
N

( ) , ( ) ,
2

,z

1/2 1/2

(82)

where now b̂ and ^†
b  are bosonic operators. In the limit of 

large N, one can then approximate the spins by N b and the 
Hamiltonian becomes,

 ⎜ ⎟
⎛
⎝

⎞
⎠ω ω^ ≃ ℏ − + ^ ^ + ℏ ^ ^ + ℏ ^ ^ +

† † †( )H
N

b b a a g N a b
2

h. c. .0

(83)

This is the quantum equivalent of two coupled Harmonic 
oscillators, with the bosonic modes â and b̂. The collection 
of two-level systems now acts like a giant quantum oscillator, 
corresponding to the mode b̂. Solving the hybrid eigenmodes 
of this Hamiltonian leads to a splitting of the size Ω = g N2 .  
The coupling coefficient ω= ℏϵg F d V/ ( )geom 0 0 . The fac-
tor Fgeom is simply a number that depends on details such as 
how V is defined and the orientation of the dipoles; it may 
have values such as 1/2, 1 / 2 , π / 2 , etc. For different 
cases, see for instance [138, 187, 194–196]. In other words, 

ω∝ ℏϵg d V/ ( )0 0  indicates how the coupling depends on 
the system parameters and gives a good order of magnitude 
estimate, but for a precise number the microscopic details of 
the specific system should be considered. Note also that this 
formula is for emitters in vacuum; for molecular films typical 
in SPP strong coupling studies one should multiply ϵ0 by the 
relative permittivity of the film ϵfilm. We see that the familiar 

N V/  term appears again. Moreover, the quantities multiply-
ing it are the same as in the semi-classical case. As with the 
coupled oscillators discussed earlier in this review, one will 
then obtain eigenmodes, with a splitting proportional, again, 
to the square root of concentration and the dipole moment. 
The eigenmodes are basically superpositions of having a pho-
ton in the mode or having an excitation in the giant oscillator 
mode. The set of oscillators can be understood as a ‘supera-
tom’ with a large dipole moment. This approach, where the 
set of two-level systems is essentially approximated by one 
bosonic giant oscillator mode was applied e.g. in [138] in 
the context of semiconductors in microcavities, rather simi-
lar to the SPP + organic emitters systems considered in this 
review. The same basic approach was used in [100] where 
strong coupling between SPPs and molecules was considered. 
Both works, naturally, ended up with the d N V/  dependence 
of the splitting in the energy spectrum. In [100], the specific 
features of plasmonic systems such as the 2D and near-field 
(exponentially decaying) nature of the SPP modes on planar 
metal surfaces were incorporated in the microscopic model. 
An interesting cavity QED treatment of interactions between 
a metal nanoparticle and a dipole emitter was presented in 
[197]. Quantized treatment of an SPP mode interacting with 
two spatially separated quantum dots was given in [198].

Although the size of the eigenmode splitting in the fully 
quantum treatment is the same as that in the semiclassical 
treatment (and the classical treatment, provided we accept a 

difference in the value of the classical and quantum dipole 
moments), there is a fundamental difference in the (semi)clas-
sical and in the fully quantum (boson-approximated Dicke) 
results. From the giant quantum oscillator viewpoint one 
assumes there are two distinct modes that interact with a cou-
pling of strength proportional to d N V/  : the photon field and 
the giant quantum oscillator made up of N atoms. A splitting 
of size d N V/  in the energy spectrum corresponds to oscil-
lations between the modes at this frequency, i.e. Rabi oscil-
lations. Thus in the fully quantum case, one expects (giant) 
Rabi oscillations with the frequency d N V/ . In contrast, in 
the semiclassical model one assumes individual two-level 
systems to oscillate with the single particle Rabi frequency  
−dE0/ℏ (not the giant one ∝ g N ), yet the linear susceptibil-
ity and thus the splitting visible in the absorption spectrum 
follows a d N V/  dependence and one might hope to see the 
corresponding dynamics in transient spectra.

In summary, those observations of normal mode split-
tings in SPP systems which show the N V/  dependence of 
the splitting basically demonstrate that the emitters are acting 
coherently. The observations so far are consistent with clas-
sical, semiclassical and fully quantum descriptions, since the 

N V/  dependence of the normal mode splittings seen in lin-
ear absorption experiments is the same in all three cases; it 
is indeed the N V/  dependence that is quantitatively tested 
in experiments. A further possible quantitative comparison is 
that of the sizes of the splittings to values given by microscopic 
quantum theory, namely the ω∝ ℏϵ ϵd / ( )0 0 film  dependence. 
However, this has only been done in [94] where a quantitative 
agreement with the microscopic prediction was found, giving 
evidence for the quantum nature of the emitters. Other differ-
ences also exist such as saturation effects in the semiclassical 
and quantum cases and the ω versus ω2 differences from the 
quantum and classical equations of motion. One could also try 
to see the discrete dependence on the photon number n, i.e. the 
Jaynes–Cummings ladder. Furthermore, one could also study 
nonclassical effects by considering the second order correla-
tion function g(2), although the regime of bosonic approxima-
tion of the Dicke model does not produce interesting results, 
instead one has to include non-linearities inherent in the Dicke 
model [100].

In some other systems, for instance Rydberg atoms 
(for reviews see e.g. [199–201]), phenomena related to the 
giant oscillator (superatom) behaviour have been observed. 
Phase transitions related to the Dicke model have been 
observed for ultracold atoms in optical cavities [189], for a  
review see [202].

5.4. Damping in the quantum case

In the quantum case the effects of damping are usually 
described by a system-reservoir approach, where the system 
of interest is coupled to a bath (reservoir) and a so-called mas-
ter equation is derived (see e.g. chapter 14 in [187] and chap-
ter 10 in [194]). The result is that the Rabi oscillations will 
be damped. Naturally, if the damping is too large i.e. of order 
or faster than the Rabi oscillations, a Fourier transform of the 
dynamics will not produce a clear split in the spectrum. Thus 
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the condition to observe strong coupling effects is the same as 
in the classical case: the damping rate has to be smaller than 
the Rabi frequency, i.e. the linewidth of the modes smaller 
than the splitting in energies, as a general rule. However, care-
ful studies of particular systems can reveal more complicated 
effects, such as the case of inhomogeneously broadened oscil-
lators [167] discussed in section 4.2.

5.5. Thresholdless lasing

The coherent interaction of an electromagnetic field with 
quantum emitters is the basis of an accurate description for 
phenomena such as stimulated and spontaneous emission, 
gain and lasing (or the spaser [203] in plasmonics). These 
phenomena can usually occur both in the strong and weak 
coupling regimes, although for instance lasing is primarily 
considered in the weak coupling limit. To restrict the scope 
of this review to something manageable, we will not discuss 
these issues here; they each deserve their own review in the 
context of plasmonics. However, it is of relevance to mention 
that thresholdless lasing is expected to occur in the strong 
coupling regime [7]. Rice and Carmichael [7] showed that the 
concept of laser threshold is well defined only in the thermo-
dynamic limit (as is the case in any phase transition phenom-
enon), thermodynamic limit here meaning small fluctuations, 
that is, small amount of spontaneous emission into the lasing 
mode. In the strong coupling limit, spontaneous emission into 
the lasing mode becomes large and the lasing threshold does 
not just go to zero but actually ceases to exist by definition. 
There is thus a fundamental conceptual difference between 
lasing in the weak and strong coupling limits. It would be of 
interest to explore the possibility of thresholdless lasing in the 
case of strongly coupled SPP-emitter systems.

6. Conclusions, open questions and future 
directions

When we began work on this review more than two years ago 
we did so in the knowledge that this was a topical area and 
that a review might provide colleagues with a useful summary 
of the field. We had not anticipated the extent to which inter-
est in this area would pick up over the intervening two years. 
What drives this blossoming of interest? Maybe one reason 
is that strong coupling spans several scientific realms that are 
deeply connected by common underlying physics. Thus whilst 
strong coupling originated in the areas of ultracold atomic 
physics and cavity quantum electrodynamics, other areas of 
science are now involved. For example, Hutchison et al [9] 
have shown that the combination of strong coupling between 
quantum emitters and surface plasmon polaritons offers the 
fascinating prospect of ‘engineering’ electronic energy lev-
els relevant to chemical processes. An indication of the wide 
scope the strong coupling phenomenon can be seen from 
reports on SPP—quantum emitter strong coupling in the con-
text of: vibrational transitions [170], ionization potentials and 
work functions [204] and thermodynamic processes [205]; 
these are in addition to the more ‘obvious’ areas of quantum 

information processing and thresholdless lasing mentioned 
above. One of the major advantages that the SPP—quantum 
emitter provides is that of an ‘open cavity’, i.e. enabling easy 
access to the mode volume in which the strong coupling takes 
place.

One of our aims in writing this review was to provide a 
single source for the background physics that is needed to bet-
ter appreciate recent developments in this field. In this con-
text we have been keen to discuss different ways of looking at 
the strong coupling phenomenon: classical (section 3), semi-
classical (section 5.1) and quantum (section 5.3). Figure 16 
summarizes these three approaches. In the classical descrip-
tion the energy level splitting associated with the strong cou-
pling between a quantum emitter and an optical mode (here 
a surface plasmon polariton) arises when the susceptibility 
of the emitter, based on a classical Lorentzian oscillator is 
substituted into the dispersion relation for a SPP. In the semi-
classical case the susceptibility is derived by considering a 
two-level system rather than a Lorentzian oscillator and then 
substituting this susceptibility into the (classical) SPP disper-
sion relation. In the fully quantum case both emitter (two level 
system) and mode (quantum field) are considered quantum 
mechanically and the splitting comes naturally via solutions 
to the appropriate Hamiltonian.

We have sought to show that all three approaches lead to 
the same prediction for the extent of the splitting. Where the 
theories differ is in the non-linear behaviour and in the exact 
relationship between the dipole moment of the emitter and the 
extent of the coupling. This last point is hard to check since 
it requires an accurate measurement for the dipole moment 
of the emitter of interest. Testing for differences between the 
classical and quantum descriptions through comparison with 
experiment is an area we expect to see develop in the future. 
We also expect to see further tests of the quantum/classical 
comparison as further experiments showing Rabi oscillations 
in the time-domain emerge.

A key open question is whether strong coupling can be 
achieved between a plasmon mode and a single emitter at 
room temperature. Quantum dots are obvious candidates for 
this since they are nanometer scale in size, similar to molecu-
lar sizes, but it is easier to envisage ways of positioning single 
quantum dots at desired locations near the metallic structure 
that hosts the SPP mode. It has been theoretically predicted 
that the vacuum Rabi splitting might be observable for a sin-
gle quantum dot in the centre of a dimer nanoantenna [206]. 
In this work, no specific type of quantum dot was considered; 
dipole moments μ/e of 0.3–0.5 nm were assumed in the calcu-
lations. Trügler and Hohenester [207] examined this question 
theoretically using a master equation approach. Their conclu-
sion was that strong coupling should be both possible and 
measurable between the localised surface plasmon-polariton 
mode of a suitably shaped metallic nanoparticle and a single 
molecule. They did not consider quantum dots specifically 
but rather single dipoles in general, having dipole moments 
of 10 a.u., which is 0.68 nm normalized with respect to the 
elementary charge. This work also predicted Rabi splittings 
of order 50 meV for single emitters placed a few nanometers 
from the tip of a cigar-shaped nanorod. Similar nano-antennas 
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were considered in a later work [208] where strong coupling 
was also also predicted. In [209] various plasmonic wave-
guide structures were considered for single emitter strong 
coupling, it was concluded that cryogenic temperatures would 
be needed to observe strong coupling. The results of this work 
[209] also suggest the need for nanostructures with very small 
dimensions and sharp features to provide small enough mode 
volumes for room temperature single emitter strong coupling. 
Sharp nano-tips were predicted to be advantageous for cou-
pling light from an emitter into a plasmonic channel [210] 
whilst in [211] conically shaped nanoparticles were predicted 
to be extremely useful for achieving strong coupling with 
single emitters. Experiments to confirm such single-emitter 
strong-coupling have yet to be reported at the time of writ-
ing. If/when such an experiment is reported it will be a major 
landmark in the field.

What other developments might we anticipate? Rich 
new physics is also expected if various types of interactions 
between the emitters are considered. For instance in [212] a 
theoretical study of a SPP-emitter system, beyond the usual 
approach namely including dipole-dipole interaction, pre-
dicted that a collective mode emerges in the middle of the 
split. It would be also interesting to see if Dicke super-radi-
ance can be realised. Yet another intriguing possibility is to use 
the high field enhancement associated with plasmon modes 
to see if non-linear Rabi splitting can be seen. The extent of 
the splitting depends on the number of (plasmon) quanta. For 
low intensity excitation the vacuum state is the most probable, 

but for higher excitation the splitting should scale as n + 1 ,  
as discussed in section 5.3. Such effects have been seen, for 
instance, at microwave frequencies in circuit QED [213, 214] 
and more recently at near-IR frequencies for quantum dots 
in a micro-pillar cavity [215]. Plasmonic components are key 
elements in building metamaterials and strong coupling is also 
of relevance in the metamaterials context [216].

Harnessing plasmonics in the field of strong coupling 
seems a natural way to exploit the key advantages that plas-
monics offers in pushing our control of light down to the 
nanoscale, namely optical field enhancement and optical field 
confinement. Given the rapid recent advances in plasmonics 
it is perhaps not surprising that strong coupling of quantum 
emitters and SPPs is such a keenly pursued topic. Given the 
level of current interest, the wide range of specialist fields 
involved and the rapidly developing capabilities afforded by a 
range of nanotechnologies we can expect to see many new and 
unexpected developments emerge in the years ahead.
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