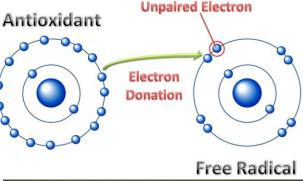


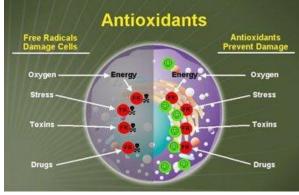
Novel SiO₂-based antioxidant compound with significantly extended life-time and activity

Georgios A. Sotiriou, Yannis Deligiannakis, Sotiris E. Pratsinis, Stefan Lux

Particle Technology Laboratory, Institute of Process Engineering ETH Zurich, Switzerland

Antioxidants: What are they? Compounds that inhibits


Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich


- oxidation of molecules
 - Donate electron to free radicals
- So why is that important?
 - Free radicals are responsible for:

TONI

ANTIOXIDANT

- Diseases
- Premature aging, Bad skin
- Applications:
 - Cosmetics
 - Nutrition and food
 - Prevents oxidation
 - Offers anti-radical activity
 - Polymer industry

ANTIOXIDAN

Current antioxidants

- Phenols are potent antioxidants
- Gallic acid: highest
- Problem: polymerization
 - Loses activity

gallic acid

OH

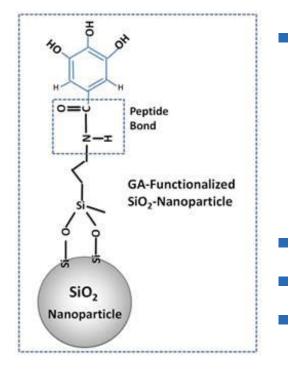
- Coloristic changes
- Can we prevent that?

	50% (lower = better)
	Ļ
Compound	EC ₅₀ (10^{-6} M)
Phenolic acids	
Gallic acid	5.1 ± 0.1
Protocatechuic acid	11.1 ± 0.0
Gentisic acid	7.6 ± 0.2
Siringic acid	12.3 ± 0.0
Caffeic acid	12.1 ± 0.2
Caftaric acid	20.4 ± 0.4
но	HO OH HO OH HO OH OH OH OH OH
	но

Antioxidant amount to

reduce the radicals by

Villano, Fernandez-Pachon, Moya, Troncosco, Garcia-Parilla. Talanta 71, 230 (2007).


HO

OH

HO

Copyright ETH Zürich


Gallic acid grafting on SiO₂ nanoparticles

Composition:

- SiO₂ (FDA approved) E551
- Gallic acid (FDA approved)
 - E310 Propyl gallate
 - E311 Octyl gallate
 - E312 Dodecyl gallate
- Covalent grafting = stability
- No coloristic change
 - Antioxidant activity

Protection & Value of the Innovation

- European Patent filed (ETH Zurich, EP 12007181.0)
- Market size
 - Cosmetics
 World: US\$ 170 billion (2007, source, Frost&Sullivan)
 - Nutrition-Food Europe: € 917 billion, (source: European Commissison)
 - **Polymers** World: US\$ 454 billion (2011, source: Lucintel)
- What are we looking for?
 - We are looking for collaboration and/or licensing partners to bring the technology to the market
- Booth No. 1221 Visit us!
- Publication
 - Y. Deligiannakis, G. A. Sotiriou, S. E. Pratsinis, "Antioxidant and Antiradical SiO₂ Nanoparticles Covalently Functionalized with Gallic Acid", ACS Applied Materials & Interfaces, Vol. 4, Issue 12, 6609-6617 (2012).

Thank you for your attention!

Contact Info

Georgios A. Sotiriou sotiriou@ptl.mavt.ethz.ch sotiriou@hsph.harvard.edu Sotiris E. Pratsinis Director Particle Technology Laboratory at ETH Zurich pratsinis@ptl.mavt.ethz.ch

Yannis Deligiannakis deligiannakis@ptl.mavt.ethz.ch Stefan Lux stefan.lux@sl.ethz.ch (ETH *transfer*, Tech Transfer Office at ETH Zurich)