Multi-Particle Sintering Dynamics: From Fractal-like Aggregates to Compact Structures Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich M.L. Eggersdorfer¹, D. Kadau², H.J. Herrmann² and S.E. Pratsinis¹ ¹Particle Technology Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland ²Computational Physics of Engineering Materials, ETH Zürich, CH-8093 Zürich, Switzerland meggers@ptl.mavt.ethz.ch ### **Objective** Characterizing the morphology and average primary particle diameter, d_{VA} , and number, n_{VA} , of fractal-like agglomerates (physically-bonded) and aggregates (chemically- or sinter-bonded) is needed for monitoring material synthesis of gas-borne nanoparticles, emissions from combustion engines and atmospheric particles. Here the evolution of particle coalescence by viscous flow sintering (e.g. SiO_2 , polymers) and grain boundary diffusion (e.g. TiO_2 , metals) of several agglomerates consisting of 16 – 512 primary particles made by diffusion limited cluster-cluster agglomeration (DLCA) is monitored in detail. ## Projected Aggregate Area Scaling¹ **Figure 1:** A power law holds between normalized projected aggregate area A_s/A_{VA} and average number of primary particles n_{VA} during sintering by a) viscous flow and b) grain boundary diffusion (average $k_A = 0.998 \& \alpha = 1.069$). $$n_{VA} = k_A \left(\frac{A_a}{A_{VA}}\right)^2$$ The d_{VA} can be estimated from agglomerate Volume V, mobility size d_m and the relation³: $A_a = \pi d_m^{-2}/4$. ## Average Primary Particle Diameter: $d_{VA} = 6V/A = (\pi k_A d_m^{2\alpha}/(6V))^{1/(2\alpha-3)}$ **Figure 2:** The evolution of d_{VA} as a function of aggregate mobility diameter, d_m , during sintering. For agglomerates of monodisperse spherical primary particles, $d_{VA} = d_p$ independent of mobility size (horizontal agglomerate or collision line). The d_m decreases during sintering while d_{VA} increases until a compact particle ($D_f = 3$) is reached (coalescence line). **Figure 3:** The d_{VA} of Ag nanoparticle agglomerates generated by Kim et al.⁴ is obtained by the proposed equation and compared to particle diameters d_p obtained by TEM⁴ (grey area represents standard deviation of d_p at T = 293 K). Higher furnace temperatures (T = 473 – 873K) lead to faster sintering and larger d_{VA} . ## Effective fractal dimension D_f vs. mass mobility exponent D_{fm} **Figure 5:** The DMA-APM data of silver nanoparticle aggregates sintered at different temperatures by Kim et al.⁴ are post-processed here. The D_{fm} exhibits a monotonic increase consistent with our sintering simulations (Fig. 4). #### References - A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404. M.L. Eggersdorfer, D. Kadau, H.J. Herrmann, S.E. Pratsinis, Langmuir 27 (2011) 6358-6367. - [3] S.N. Rogak, R.C. Flagan & H.V. Nguyen, *Aerosol Sci. Technol.* 18 (1993) 25-47. - [4] S.C. Kim, J. Wang, M.S. Emery, W.G. Shin, G.W. Mulholland & D.Y.H. Pui, J. Aerosol Sci. 43 (2009) 344-355. #### Conclusions - 1. The projected area scaling $n_{VA} = k_A \left(\frac{A_s}{A_{VA}}\right)^a$ is valid during sintering. - 2. The α and k_A are independent of sintering - The d_{VA} obtained by this work is in reasonable agreement with counting TEM images. - 4. The mass-mobility exponent D_{fm} increases monotonically, while the fractal dimension D_f reaches a minimum. So D_{fm} can be used to characterize the degree of sintering. Acknowledgments: Financial support by ETH Research grant (ETHIIRA) ETH-11 09-1 and the European Research Council.