High-throughput generation of aircraft-like soot

Una Trivanovic, Georgios A. Kelesidis, Sotiris E. Pratsinis
Particle Technology Laboratory, ETH Zürich, Switzerland
Motivation

Ultrafine (< 100 nm) particle air pollution [1]

Specific surface area, SSA, is one of the most important metrics for quantifying toxicity [2]

Atmospheric aging

SSA measurement requires 10s of mg of soot!

Cannot produce high-thrust aircraft soot (OC/TC too high or d_m too large)
Experimental set-up

- Thermocouple
- Sampling tube
- Rotating disk
- Air dilution
- N₂ dilution
- Pump
- Glass fiber filter
- X-ray Neutralizer
- N₂ Adsorption
- TEM
- TGA
- SMPS
- APM
- DMA
- CPC
- Sheath air
- O₂ dispersion
- Jet A1 fuel
- Premixed flame
- Burner
- Air
- O₂
- CH₄
- N₂

Mobility size distributions

Mobility diameter, d_m (Mobility diameter)

Richer flame

EQR = 1.25

Aircraft soot: 3% thrust [1]

85% [1]

100% [2]

85% [1]

100% [2]

$\frac{dN}{d\log(d_m)/N_{tot}}$

Mobility diameter, d_m (nm)

Dynamics of soot d_m and d_p

Median mobility, \bar{d}_m, or primary particle \bar{d}_p, diameter (nm)

Equivalence ratio, EQR

Aircraft soot \bar{d}_p from 10 – 20 nm [1,2]

Organic carbon to total carbon ratio

Equivalence ratio, EQR

High thrust aircraft soot: TOA [1-4]

OC/TC from:
Thermal Optical Analysis, TOA

Mass concentration

Median mobility diameter, \bar{d}_m (nm)

Mass concentration, M (mg/m3)

Enclosed spray combustion [2]

3 orders of magnitude

MiniCAST 5201 [1]

0.3 mg/min

18 mg/min

Pore size distributions

Pore area, dA/dlog (w) (m2/g)

Pore width, w (nm)

1.59
258 m2/g

1.46
282 m2/g

100% thrust [1]

EQR = 1.29
SSA = 160 m2/g

85% thrust [2]

1.34
239 m2/g

Conclusions

- Aircraft-like soot is generated here by enclosed spray combustion by varying EQR

- The present reactor can produce up to 3 orders of magnitude larger mass concentrations than existing generators

- Aircraft soot is primarily non-porous but at take-off (100% thrust) there may be an increase in porosity.
Thank you for listening