

Structure of flame-made vanadia/silica and catalytic behavior in oxidative dehydrogenation of propane

B. Schimmöller¹, Y. Jiang², S.E. Pratsinis¹ and A. Baiker²

¹Particle Technology Laboratory, Institute of Process Engineering, ²Institute for Chemical and Bioengineering, Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8092 Zürich, Switzerland schimmoeller@ptl.mavt.ethz.ch

Structure of VO_x specie

Motivation

Vanadia-based catalysts are promising catalyst for the application in oxidative dehydrogenation of propane [1]. Besides the composition of the support, the structure of the VOx-species is crucial for the catalytic performance. Tetrahedral monomeric species are considered to be most favorable for high catalytic activity [2]. Recently, flame-made vanadia-based catalysts showed high dispersion even at high vanadium surface density [3]. Here we studied the V2O5/SiO2 system made by flame spray pyrolysis (FSP) for the oxidative dehydrogenation of propane.

Catalyst Morphology

Fig. 1 Flame spray pyrolysis (FSP) synthesis setup and working principle.

Fig. 2 Influence of vanadia content on specific surface area (SSA) of the single step FSP-made catalyst. Inset shows BET isotherms indicating non-porous particles [4].

Fig. 3 TEM images of the 10 wt.% (a) and 50 wt.% (b) V_2O_5/SiO_2 samples. Only amorphous particles are detected for the 10V-Si catalysts while the 50V-Si sample clearly shows the presence of crystalline domains (EDX inset) which can be attributed to crystalline V2O5 with lattice fringes of ca. 6.5 Å [4].

Fig. 4 Long term in-situ Raman spectra recorded at 500 °C in synthetic air for 72h for the 5V-Si (a), 15V-Si (b), 20V-Si (c) and 25V-Si (d) catalysts [4].

Fig. 5 51V MAS NMR spectra of the 3V-, 10V-, 20V- and 25V-Si catalysts under dehydrated conditions Symbols • and * indicate the Symbols • and sidebands of the isotropic shifts at -616 ppm (V-O-V) and -690 or -711 ppm (V-O-Si), respectively [4].

Fig. 7 Variation of the turnover frequencies (TOF, cubes) and propane conversion (X_{C3H8} , triangles) with the V surface densities. Reaction conditions: $m_{cat} = 0.2 \text{ g}, \text{ GHSV} = 45'000 \text{ L } g_{cat}^{-1}h^{-1}, T_{reaction}$ 550 °C, C₃H₈:O₂:N₂ = 1:1:3 [4].

Fig. 8 Propene selectivity as function of propane Fig. 8 Properte selectivity as runcator of properte conversion on flame-made $V_2O_4SiO_2$ catalysts for (a) constant GHSV (45'000 L $g_{cat}^{-1}h^{-1}$) and (b) with variation of GHSV (37'500-60'000 L $g_{cat}^{-1}h^{-1}$) [4].

Sample	C3H8 conv. (%)	Selectivity (%)			TOF x 10 ²¹	STY _{C316} b)
		C_3H_6	CO2	со	(µmol-C2H6 V-1s-1)	$(kg kg_{cat}^{-1}h^{-1})$
0V-Si	3.7	40.4	36.0	5.9	-	0.3
3V-Si	8.5	50.0	34.6	9.2	29.3	0.9
5V-Si	11.5	43.4	29.0	12.2	22.5	1.1
10V-Si	16.6	34.0	25.6	23.5	12.2	1.2
15V-Si	23.7	33.2	26.4	22.3	11.7	1.8
20V-Si	19	31.2	21.9	25.4	6.9	1.4
25V-Si	20.2	25.0	24.1	32.1	4.6	1.1
-						

Tab. 1 Conversion and selectivity of the flame-made V_2O_{e}/SiO_2 catalysts in the oxidative dehydrogenation of propane at 550 °C [4].

Conclusions

- · FSP-made catalysts show unique properties in terms of V dispersion with dominantly isolated tetrahedral sites up to 3.3 V nm⁻²
- VO_x species are highly stable up to 500°C
- Activity strongly depended on the amount of vanadia and increased with reaction temperature and loading
- Highest propene yield was achieved despite presence of crystalline V2O5

References

- B. Solsana, T. Blasco, J.M.L. Nieto, M.L. Pena, F [1]
- Rey, A. Vidal-Moya, *J. Catal.* **203** (2001) 443-452 Y.M Liu, W.L. Feng, T.C.Li, H.Y. He, W.L. Dai, W. [2]
- Huang, Y. Cao, K.N. Fang, J. Catal. 239 (2006) 263-310 [3] B. Schimmoeller, H. Schulz, A. Ritter, A. Reitzmann,
- B. Kraushaar-Czarnetzki, A. Baiker, S.E. Pratsinis, J. Catal. 256 (2008) 74-83 B. Schimmoeller, Y. Jiang, S.E. Pratsinis, A. Baiker, J.
- [4] Catal. 274 (2010) 64-75