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Gian Nutal Schädli, Room ML F24, e-mail: schaedli@ptl.mavt.ethz.ch

(Substitute) Rajesh Koirala, Room ML F25.2 e-mail: rkoirala@ptl.mavt.ethz.ch



i CONTENTS

Contents

1 Introduction 1

2 Milling 2

2.1 Break-up scenarios in milling . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Milling kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Milling laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Mills 7

3.1 Mills with loose milling tools . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Ball mills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Sieving (Screening) 9



1 1 Introduction

1 Introduction

Many technically interesting materials are solids. These solids have to be transported,

stored, precisely mixed with other materials or separated from them. In most cases, the

solids are machined into granules, dust or more general “particles” with a size between

1 µm and 1 mm, because in this form the materials are easy to handle.

Beside the material properties, which are mainly determined from chemical composi-

tion of the solids, the geometrical properties of the particles are of special importance.

For example the flow behavior of the particles in a moving fluid is determined by the

size and shape of the particles. Also the chemical conversions of the solids is deter-

mined by the mass and energy transport to the surface, and is thus dependent on size

and shape of the particulate material.

Determined by the fabrication or exploitation process of the solid particles, not all

the geometric properties of all particles are the same. Besides the description of the

single particles, also the description and knowledge about variance and distribution of

properties are of importance.

Because solid particles are mostly processed in large quantities, properties of the bulk

particulate material (or a particle collective) have to be known as well. These proper-

ties can only be derived from single particle properties to a small degree and have to

be determined separately.
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2 Milling

The state of dispersion of a particulate material determines its properties in many dif-

ferent ways (e.g. solubility, dispersibility in fluids, flow behavior, color). For this rea-

son, milling plays an important role in many industrial fields (construction materials,

mining industry, chemical industry, food industry). About 4% of the electric energy

production worldwide is used for milling processes and about 1% of the industrial

production is produced using milling processes.

2.1 Break-up scenarios in milling

If a solid body has to be divided, internal tensions have to overcome the binding forces

of the atoms in the body. This normally happens via external forces, which are applied

via the contact points of the particles leading to deformation and tensions.

Deformation and tension are bound to physical laws and can be divided into three

limits: elastic, plastic or viscous behavior.

The theoretical fracture tension σth required to overcome atomic binding forces may

be derived with assumption of an ideal atomic lattice and uniform tension:

σth =
EγA
a0

.

a0:lattice constant

E:elastic modulus

γA: specific free boundary surface

The difficulty in calculation of the above mentioned equation is due to the fact that the

specific free surface γA is not accessible offhand. An estimation gives :

E

5
> σth >

E

15
.

The real toughness is lower for some orders of magnitude than the theoretical fracture

stress. The reason for this is explained by the fact that real crystal lattices are never

perfect. Errors in crystal lattices lead to local tensions that are larger than the average

tension in the body. Fracture starts though from such weak spots and will spread.

The fracture may be described as a crack growing process in submicroscopic, micro-

scopic and macroscopic dimensions.
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Fig. 1 shows the possibilities in growth of the cracks.
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Figure 1: possibilities of crack formation (schematic)

Crack initiation is the transition from a static into an dynamic crack. Right after that,

growth of the crack follows. The crack grows larger and in the end the body fractures.

Stable growth of the cracks is enabled by constant energy supply from outside and

leads to macroscopic ductile fracture. An instable spreading of the cracks is due to

internally stored energy in form of tension that is converted into the energy required

for growth of the cracks. The growth of the cracks happens at very fast velocities (>

1000 m/s) and leads to macroscopic brittle fracture.

The crack growth may be initiated by pressure, sheer or impact as Fig.2 shows.
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Figure 2: strain between two surfaces: a) Pressure b) shear c) impact
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2.2 Milling kinetics

The changing particle size distribution of the milled good as a function of time is most

easy to characterize qualitatively if the material has initially only one particle size. At

the start of milling the first size class is continually diminished, (Curve A Fig. 3) first

faster and then slower. An average particle size class is initially built up. With further

milling time this size class reaches a maximum percentage (Curve B Fig. 3) since this

class is milled to a smaller particle size class. Very small particle size classes evolve

with time during the milling process. (Curve C Fig. 3)
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Figure 3: milling kinetic of a discontinuous milling process

In modeling of a discontinuous milling process, it may be assumed that particle size

distribution is not a function of position in the milling good (due to good mixing in the

milling process) and is homogeneous over the whole good.

The following integral equation describes a discontinuous milling process:

D(y, τ)︸ ︷︷ ︸
massfraction <y

after t t=τ

= D(y, 0)︸ ︷︷ ︸
massfraction < y

at t=0

+

∫ τ

0

∫ x0

x=y

∂D(x, t)

∂x
S(x)B(y, x)dxdt︸ ︷︷ ︸

massfraction < y generated from x < y during τ

.

The mass-based milling speed S(x) describes the selective disaggregative events. It is

the mass fraction of the differential particle size class x . . . x+dxwhich is fractured per

unit time. (When implementing such a model one has to distinguish between particle

size before and after the fracture event). The breakup event is characterized by the
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fragments size distribution B(x, y). This describes the mass fraction < y that results

from selected mass of x . . . x+ dx per unit time due to a fracture.

2.3 Milling laws

The connection between milling work and milling events is subject to research for

more than 100 years. Rittinger investigated the decomposition of a cube into smaller

cubes and postulated that the required energy WR is proportional to the new generated

surface ∆A:
∆A

WR
= const.,

SM =
S

M
∝

d2p
ρpd3p

=
1

ρpdp
.

SM is the mass specific surface.

Therefore the specific milling work may be described as follows:

WM,R = CR

(
1

dp,ω
− 1

dp,α

)
,

Where dp,α is the particle size of the initial milling goods, dp,ω is the particle size of

the milled good and CR is a constant depending on the properties of the milling good

and the mill and has to be determined experimentally. Rittinger’s law applies best at

small particle sizes (dp,ω in the order of µm)

Kick postulated in 1885, that milling work is proportional to the deformed volume:

W ∝ V,

WM =
WM,K

SM
∝
d3p
d2p

= dp,

dWM,K ∝ dpdSM ,

dSM ∝ −d(dp)

d2p
.

When the two last equations are put together the specific milling work according to

Kick is:

WM,K = cK ln
dp,α
dp,ω

.

cK is a constant of proportionality.
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If the particle end size is small, calculations are done following Rittinger. When the

size difference between initial and end particle size is small and end particle size is

large (crushing of rocks), then the correlation of Kick is more suitable (See Fig.4).

In the 50s Bond came up with an empirical relation covering the range between Rit-

tinger and Kick’s law, correlating the mass specific comminution workWM,K with the

80 %–particle size d80,α and d80,ω respectively:

WM,B = cB

(
1√
dp,ω

− 1√
dp,α

)
.

also written in the following form:

WM,B = 10Wi,m

(
1√
d80,ω

− 1√
d80,α

)
.

Wi,m is the work needed for comminution a large (infinitely large) particle to 100 µm.

(Bond work index)

Wi,m =
P

ṁ

[
Wh

kg

]
These indexes can be looked up in literature or be determined experimentally.

For quartz sand: Wi,m
∼= 16kWh

t

P : Comminution power (acting on particles) [W ]

ṁ: Throughput [kgh ]

The work needed for technical milling is a manifold of the newly generated surface en-

ergy. The growth in surface energy is not a good value for definition of the theoretical

efficiency ηth. The efficiency is better described by the resistance to cracks R.

ηth =
∆A R

2 WM,B

∆A: growth in surface

R: resistance to crack formation in minerals R = 30− 60 J
m2 (take 45 J

m2 )
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Figure 4: Specific comminution energy according to Rittinger, Bond and Kick

3 Mills

3.1 Mills with loose milling tools

This is a big group of mill designs with freely moving tools such as spheres, sticks

or short cylinders or also coarse grains of the milling good themselves (autogenous

milling). The milling tools (also called grinding media) are located in a closed vessel

and are accelerated by the movements of the vessel or by a stirring mechanism. The

relative movement of the milling tools strains the milling good in between.

3.2 Ball mills

Ball mills are the most important group of such machines. Different sizes of such

machines exist from laboratory scale to full industrial scale. The vessel is cylindrical

shaped and filled with 25 to 45% balls with same or different sizes. The fill-degree

(also filling factor) is defined as the quotient of the volume of the milling tools and

volume of the vessel. Depending on the rotation speed and the fill-degree, three differ-

ent movement states of the balls may be distinguished: Crawling (cascade movement),

falling (cataractous movement) and centrifuging (Fig. 5). The change between these

states is a smooth transition. Centrifuging starts at a critical rotation speed nc, that can

be calculated with centrifugal force ω2R = 2π2n2D is equal to gravitational force g:

nc =
( g

2π2D

) 1
2
,
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with D in meters and nc in rotations per second. In practical applications, 75% of

critical speed has proven to be a good value.

Figure 5: Movement states of the filling

In our lab course, we will work with a centrifugal ball mill. The feedstock can be

filled up to 10 mm and will be milled to particles of about 1 µm. The mill consumes a

maximum power of 100 W . (Do not assume the mill produces 100W of comminution

power)

In Fig. 6 the parts of the mill are described.

A

B

C

Figure 6: Centrifugal ball mill

A: milling room with balls

B: counterweight to milling room and content

C: shaft

The mill is able to turn up to 500 rpm and mill 200 ml of feedstock.
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4 Sieving (Screening)

Sieving or screening is the separation process of a particulate good according to its

grain sizes, where a perforated area lets small particle sizes pass through and keeps

back larger sizes.

In practice the meshes of a sieve never select a sharp particle size class. Not every

mesh has the exact same size, and the size distribution is enlarged even further due to

wear. Fig. 7 shows the geometry of a mesh. The weaving process shapes the mesh

trapezoidal. The effective size of a mesh is for a spherical particle the width m.

Figure 7: a) Meshes of a woven sieve. b) Sieve under a microscope.

To determine the size of the meshes and the mesh-size distribution, analysis can be

done with a microscope. The meshes will not be uniform in size, there is a cerain

distribution of mesh sizes due to manufacturing tolerances.

Sieving analysis of a particle collective can thus not produce a sharp cut between par-

ticle size classes. (undersizes: between particle with average size smaller than average

mesh size and oversizes: particles larger in size than average mesh-size) In Fig. 8 the

analysis of spherical shaped copper particles is shown. One can observe that some

larger particles may have passed through the meshes. On the other hand some smaller

particles that should have passed the meshes remain in the oversizes. A small spectrum

of sphere sizes even got caught in the sieve meshes.

The sieve analysis is a cheap and uncomplicated measurement to determine the particle

size distribution. For this, a stack of several sieves is used with decreasing mesh size

from top to bottom (see Fig. 9).

The material is placed on the topmost sieve and the whole stack is set to swing. After
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Figure 8: Analysis of a sieve with copper spheres

Figure 9: Scematic of sieve analysis

a certain time the residues on the different stages are weighted.

The analyzed material is divided into several size ranges called classes. The mass re-

maining ∆Mi on the sieve i is called residue. The equivalent diameter of the particles

of class i is between the upper class boundary and the lower boundary, thus between

the mesh size of the sieves above and below the particles. The difference is called the

class width.
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Figure 10: Histogram

A common graphic representation of the results of a screening analysis is the his-

togram. (Fig. 10)

qi is the residue that is related to the total mass M and the class width ∆xi = (xi+1 −

xi).

qi =
∆Mi

M∆xi
=

∆Ri
∆xi

,

which can also be defined from relative residues

∆Ri =
∆Mi

M

is plotted over the class boundaries from xi to xi+1 in form of columns (pillars) The

change from discrete to differential representation of the data is the distribution den-

sity function (Fig. 10):

q(x) =
1

M

dM

dx
=
dR

dx
.

The sum of the relative residues leads to (starting from the top sieve) the cumulative

relative residuesRi. IfRi is plotted against the mesh size xi the residues characteristic

line Ri = R(x) is obtained. On the other hand Di = 1−Ri = D(x) is the throughput

characteristic line or cumulative distribution. (Fig.11 top)

The residues are weighted in screening analysis. This way a mass distribution is

obtained (Q3(x) = D(x)). Likewise the particles on each sieve could be counted,

what would lead to a number (or count) distribution (Q0). It is a big effort to

count particles though and thus the count distribution is normally not used in practical

applications.
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Figure 11: Cumulative distribution and distribution density function of a lognormal

distribution

Mass and count distributions can be calculated from each other by moments. The dis-

tributions differ from each other in the way that the maximum of the mass distribution

is at larger sizes than the maximum of the count distribution. This is the case, because

smaller particles have a smaller mass than an equal number of larger particles.

Figure 12: Mass and count-distribution of the same particle sample
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Moments

General representation of a moment of a distribution qr(x) is

Mk,r =
∑

xki qr(xi) =

∫ xmax

xmin

xkqr(x)dx.

r = 0, 1, 2, 3 is number, length, surface, volume.

k is the corresponding moment.

x is the particle characteristic.

i is the size class i

Example

The third moment of a count distribution is the total volume V of all particles:

M3,0 = V =

∫ ∞
0

x3q0(x)dx.

The particle characteristic x is the particle size (diameter).

Moments are used to convert an arbitrary distribution into an other (for example the

mass distribution into a number distribution)

General:

qr(x) =
xr−jqj(x)

Mr−j,j
.

Example: Conversion of a count distribution into a volume distribution:

q3(x) =
x3q0(x)

M3,0
=
x3q0(x)

V
.

Averages There are a couple of averages which characterize a distribution:

Arithmetic average: x =
∑
x

N x: diameter of a particle, N: number of particles.

Median : xme or x50,r: The diameter dividing the distribution into two parts with

equal numbers of particles above and below this size. r= 0,1,2,3 stands for count,

length, sufrace and volume.

Mode: xmo: The most frequent diameter in the distribution. The diameter at the

maximum of the distribution density function.

diameter of average mass: xg =
(∑

nix
3
i

N

) 1
3
.

mass mean diameter: xm =
∑
nix

4
i∑

nix31
=

∑
mixi∑
mi

Sauter mean diameter: xs =
∑
nix

3
i∑

nix21
=
(
6
ρ

)
M
A for spherical particles.

M: total mass, A: Total surface.



4 Sieving (Screening) 14

Logarithmic normal distribution

The primary result of a particle size analysis is a distribution in graphical or tabular

form. These data are though unhandy and not very useful for comparisons. That is

the reason why discrete experimental data is often fitted with continuous distribution

functions. This way the distribution is reduced to a few characteristic numbers. Mostly

those distribution functions have two parameters: one describing the position of the

distribution and the other describing the scattering or spread. These parameter are

determined mostly by plotting the cumulative distribution in a diagram whose axes

are scaled in a way that the cumulative distributions is linear. (only works if the real

particle size distribution is described well enough by the chosen function to modify

the chart axis) Note: This is not a log-log plot!

One distribution function that works for a lot of cases is the log-normal distribution.

(DIN 66 144). There is no physical reason for this, it is just a empirical observation.

In this distribution function ln(x) is normally distributed and the geometric standard

deviation σg describes the spread around ln(x50,r) (median). The density function of

the log-normal count distribution is the following:

q0(x) =
1

lnσg
√

2π · x
exp

(
−1

2

(
ln(x/x50,0)

lnσg

)2
)

lnσg =

√
1

1−N
∑
i

ni (lnxi − ln(x50,0))
2.

The cumulative distribution is:

Q0(x) =

∫ x

0
q0(ξ)dξ.

where ξ is an integration variable.

As visible in the density function, the parameters describing the distribution are:

Postion of distribution: x50,r Median; (Qr(x50,r) = 50%)

Spread/Width of distribution: σg Geometric standard deviation

The advantages of the log-normal distribution are the good representation of the fine

particles in most fabrication processes. Any weighted (count, mass, etc.) distribution
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of a log-norm distribution is again a log-norm distribution with the same geometric

standard deviation. Calculation of important characteristic numbers is rather easy

for log-norm distributions:

Volume specific surface:

Sv =
6

x50,3
exp

(
σ2g
2

)
Sauter mean diameter:

xs =
M3,0

M2,0
= x50,3 exp

(
−
σ2g
2

)

Moments:

Mk,r = xk50,r exp

(
k2σ2g

2

)
,

Differently weighted distributions:

qk(x) =

exp

((
−1

2
ln(x/x50,r)

σg
− (k − r)σg

)2)
σg
√

2π · x
.

Medians of differently weighted distributions:

x50,r = x50,s exp
(
(r − s)σ2g

)
A disadvantage of the log-normal distribution is the large size fraction is not limited

and the fraction of large sizes is (theoretically) always overestimated. In practical

application this is not a problem, because qr(x) is never zero for large x but is very

small, so that differences compared to measured distributions are negligible.
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For evaluation, the residues mi shall be collected and subsequently normalized by the

total mass M . The cumulative distribution function (D(x) = Q3(x)) shall be calcu-

lated and plotted in the log-normalprobability chart (last page) on the y-axis (in %)

versus particle size (corresponding to intermediate sizes between sieve mesh width).

If the measurements plot in this chart is approximately a straight line, the distribution

is log-normal. The median x50,3 at Q3(x50,3) = 50% can be directly read from the

graph, regardeless whether the plot is linear or not. The geometric standard deviation

σg can be estimated by the following equation:

σg =

(
x84,3
x50,3

)
.

If both the parameters of the log-normal distribution are known, the histogram can be

compared with the approximated frequency distribution curve. For this the frequency

distribution curve should be placed through the averages of each size interval defined

by the mesh sizes.




