Superior Selectivity of Acetone in Gas Mixtures By Pt/Al₂O₃ Catalyst-Filtered Si/WO₃ Sensors

Ines C. Weber¹, Hugo P. Braun¹, Frank Krumeich¹, Andreas T. Güntner², Sotiris E. Pratsinis¹ ¹ Particle Technology Laboratory, ETH Zürich, Switzerland

² Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zürich, Switzerland

Breath acetone detection

Acetone: marker for fat-burn (among others)

- Metabolic health monitoring
- Non-invasive
- Personalized on-line monitoring

Detector requirements

- Sensitivity (down to ppb)
- Fast, compact & inexpensive
- Humidity Robustness
- Selectivity
- Complex gas mixtures (e.g. breath) > 1'000 interferants¹
 - Drabinska N, Flynn C, Ratcliffe N, Belluomo I, 1. Myridakis A, Gould O, Fois M, Smart A, Devine T, de Lacy Costello, P J. Breath Res. 2021, 14, 034001.
 - 2. Turner, C.; Španel, P.; Smith, Physiol. Meas. 2006, 27.321-337.
 - 3. Güntner AT, Kompalla JF, Landis H, Theodore SJ, Geidl B, Sievi NA, Kohler M, Pratsinis SE, Gerber PA, Sensors 2018, 18, 3655.
 - 4. Königstein K, Abegg S, Schorn AN, Weber IC, Derron N, Krebs A, Gerber PA, Schmidt-Trucksäss A, Güntner AT, J. Breath Res. 2020, 15, 016006
 - 5. King, J.; Kupferthaler, A.; Unterkofler, K.; Koc, H.; Teschl, S.; Teschl, G.; Miekisch, W.; Schubert, J.; Hinterhuber, H.; Amann, A. J. Breath Res. 2009, 3, 027006.
 - 6. Deveci, SE, Deveci, F, Acik, Y, Ozan AT, Respiratory Medicine, 2004, 98, 551-556.
 - 7. D. J. Calloway, E. L. Murphy, D. Bauer, Am. J. Dig. Dis. 1969, 14, 811. [24]
 - 8. Bessonneau, V.; Thomas, O. Int. J. Environ. Res. Public Health 2012, 9, 868-879.

State-of-the-art

Material		Selectivity (S _{Acetone} /S _{Analyte}), [-]				
		Ethanol	Isoprene	H ₂	CO	NH ₃
Composites	SnO ₂ / reduced graphene oxide ¹	4.3	-	-	9.5	9.5
	SnO ₂ / multi-walled carbon nanotubes ²	1.8	-	-	2.9	-
	Ni-SnO ₂ / graphene ³	1.9	-	18	-	-
Metal Oxides	Al/ZnO ⁴	-	3.6	-	7.4	6.9
	Au-vertical hematite nanotubes ⁵	2.4	-	87	86	36
	Si/WO ₃ ⁶	11.4	0.5	139	289	140
	Nb/WO ₃ ⁷	23	-	120	>50	100
	Pt/Al ₂ O ₃ + Si/WO ₃ ⁶	>500	>1000	>250	>1000	>1000

- 1. Choi SJ, Jang BH, Lee SJ, Min BK, Rothschild A, Kim ID, ACS Appl. Mater. Interfaces 2014, 6, 2588.
- 2. Narjinary M, Rana P, Sen A, Pal M, Mater. Des. 2017, 115, 158
- 3. Singkammo S, Wisitsoraat A, Sriprachuabwong C, Tuantranont A, Phanichphant S, Liewhiran C, ACS Appl. Mater. Interfaces 2015, 7, 3077.
- 4. Yoo R, Güntner AT, Park Y, Rim HJ, Lee HS, Lee W, Sensors Actuators, B 2019, 283, 107.
- 5. Kim DH, Kim TH, Sohn W, Suh JM, Shim YS, Kwon KC, Hong K, Choi S, Byun HG, Lee JH, Jang HW, Sensors Actuators, B Chem. 2018, 274, 587.
- 6. Weber IC, Braun HP, Krumeich F, Güntner AT, Pratsinis SE, Adv. Sci. 2020, 7, 2001503
- 7. Choi HJ, Chung JH, Yoon, JW, Lee JH, Sensors Actuators, B 2021, 338, 129823.

Selective sensors enabled by catalytic filters

Interferants

Time, s

bpm

Pt/Al_2O_3 at 135 °C

Si/WO₃ at 400 °C

- Continuous interferant removal by chemical reaction²
- Rapid measurements
- Differentiate between VOCs³
- Configuration: packed bed or overlayer⁴
- 1. Güntner AT, Weber IC, Pratsinis SE, ACS Sensors, 2020, 5, 1058 1067.
- 2. Portnoff MA, Grace R, Guzman AM, Runco PD, Yannopoulos LN, Sens. Actuators, B, 1991, 5, 231–235
- 3. Van den Broek J, Weber IC Güntner AT, Pratsinis SE, *Materials Horizons*, **2021**, 8, 661 684.
- 4. Moon, YK, Jeong SY, Jo YM, Jo YK, Kang YC, Lee JH, Advanced Science, 2021, 8, 2004078

1

Selective acetone detector

Catalytic filter enables superior acetone selectivity!

Weber IC, Braun HP, Krumeich F, Güntner AT, Pratsinis SE, Advanced Science, **2020**, 7, 2001503.

Selective acetone sensing in gas mixtures

Acetone sensing despite orders of magnitude higher interferants

Catalyst conversion mechanism

Interferant conversion on surface-adsorbed hydroxyl species¹

Acetone conversion is blocked by water that dissociates on Lewis acid sites²

- 1. Mallat T, Baiker A, Chem. Rev. 2004, 104, 3037
- 2. Panov AG, Fripiat JJ, J. Catal. 1998, 178, 188
- 3. Weber IC, Wang, CT, Güntner AT, Materials, 2021, 14, 1839

Reality check: Breath

Weber IC, Derron N, Königstein K, Gerber PA, Güntner AT, Pratsinis SE. Small Science, 2021, 2100004

Conclusions

- Unprecedented acetone selectivity by catalytic Pt/Al₂O₃ filter
- Acetone detection in gas mixtures with orders of magnitude higher interferants
- Miniaturization potential: catalyst at room
 temperature
- Accurate acetone quantification in breath

Ongoing: Randomized Clinical trial 72 volunteers

Weber IC, Braun HP, Krumeich F, Güntner AT, Pratsinis SE, Advanced Science, **2020**, 7, 2001503.