F/I Sintering Rate and Crystal Structure of Gold Nanoparticles by Molecular Dynamics
 Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zürich

a

E. Goudeli, and S.E. Pratsinis
Particle Technology Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland goudel@ptl.mavt.ethz.ch

Characteristic Sintering Time, τ_{s}

Normalized surface area by sintering of two gold nanoparticles with initial diameter, $d_{p, 0}$, of 3 nm . Snapshots of the coalescing particles are shown at
$t=0,0.01$ and 1 ns for $T=800 \mathrm{~K}$.

Normalized surface area by sintering of two Au nanoparticles at $T=800 \mathrm{~K}$.

Characteristic sintering time by MD simulations as a function of temperature.

Crystallinity Dynamics during Sintering

Snapshots of cross-sections colored according to the local disorder variable at
Blue-colored atoms have fcc-like crystal structure while green to red ones have increasingly distorted crystal structure.

References

[1] Huang D, et al. (2003) J. Electrochem. Soc. 150, G412 [2] Sambles JR. (1971) Proc. R. Soc. London A 324, 339 [3] Buffat P, Borel J-P. (1976) Phys. Rev. A 13, 2287 [4] Lewis LJ, et al. (1997) Phys. Rev. B 56, 2248 [5] Shim J-H, Lee B-J, Cho TW. (2002) Surf. Sci. 512, 262 [6] Arcidiacono S, et al. (2004) Int. J. Multiphas. Flow 30, 979 [7] Shibuta Y, Suzuki T. (2010) Chem. Phys. Lett. 498, 323

Conclusions

1. The MD-obtained melting point of nano-sized Au particles is in excellent agreement with experiments and theory validating the present analysis.
2. The characteristic sintering time, τ_{s}, is quantified for particle diameters, $d_{p, 0}=2-4 \mathrm{~nm}$ by tracing the evolution of the particles surface area. Increasing temperature and decreasing particle size results in faster particle coalescence.
3. The degree of disorder is quantified by the disorder variable. Two-equal-particle sintering leads to enhanced disorder of the surface atoms during particle adhesion and finally to formation of polycrystalline grains.
