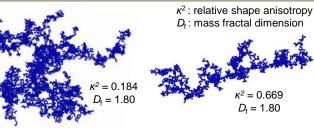
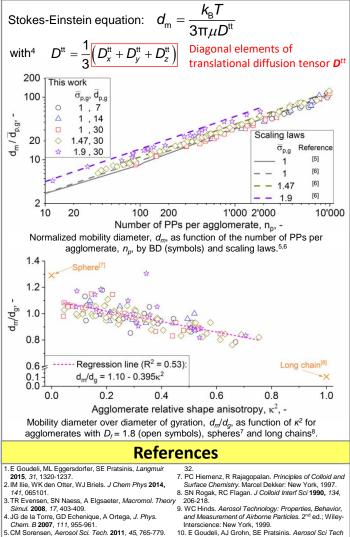
Settling rate of nanosized fractal-like agglomerates **Swiss Federal Institute** by Brownian Dynamics simulations of Technology Zurich

A. Spyrogianni,¹ K.S. Karadima,^{2,3} E. Goudeli,⁴ V.G. Mavrantzas^{1,2,3} and S.E. Pratsinis¹

¹ Dept. of Mechanical and Process Engineering, ETH Zurich, Switzerland; ² Dept. of Chemical Engineering, University of Patras, Patras, Greece; ³ Inst. of Chemical Engineering Sciences, FORTH/ICE-HT, Patras, Greece; ⁴Dept. of Mechanical Engineering, University of Minnesota, USA


Introduction

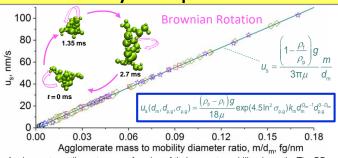
The precipitation of agglomerates impacts water cleaning, nanotoxicology, nanomedicine as well as the stability of engineered nanofluids. Here, the settling rate, u_s, of fractal-like SiO₂ agglomerates¹ is calculated by Brownian Dynamics (BD)² tracking their translational and rotational³ motion under gravity in water.


The agglomerate mobility diameter is calculated from the translational diffusion coefficient⁴ and compared to scaling laws from the literature.^{5,6} The effect of constituent primary particle (PP) geometric mean diameter, $d_{p,q}$, and standard deviation, $\sigma_{p,g}$, (polydispersity) on agglomerate u_s is investigated.

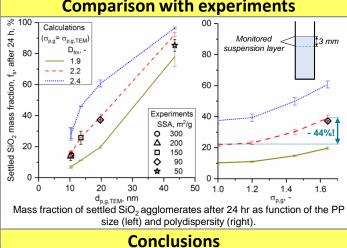
An analytical expression for u_s is derived and compared to deposition rate measurements by UV-vis spectroscopy of fumed SiO₂ agglomerates in water.



Mobility diameter, *d*_m



2016, 50 (6), 591-604.4.5


6. R Dastanpour, SN Rogak, J. Aerosol Sci. 2016, 94, 22

Analytical expression

Agglomerate settling rate, u_s, as function of their mass to mobility size ratio. The BDobtained data are fitted to an analytical expression. $k_{\rm m}, D_{\rm fm}$: mass-mobility prefactor & exponent; $\rho_{\rm p}$, $\rho_{\rm f}$: density of PPs and fluid; μ : fluid viscosity; g: gravitational acceleration.

- The d_m is in agreement with scaling laws^{5,6} & the d_m/d_a decreases with increasing κ^2
- For constant d_m , the agglomerate u_s increases with increasing $d_{p,q}$ and $\sigma_{p,q}$
- Linear relationship of u_s with m/d_m is revealed, due to fast Brownian rotation
- Comparison with experiments indicates D_m of 2.2 for fumed SiO₂ in water, consistent with aerosol measurements of other flame -made agglomerates¹⁰ • If monodisperse PPs are assumed, the applomerate u_s is underestimated considerably