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S1. EXEMPLARY IMPACT OF MD ON AEROSOL NANOPARTICLE FORMATION AND GROWTH 11 

In aerosol synthesis of materials Blaisten-Barojas and Zachariah20 first showed by MD 12 

that upon coalescence of tiny molecular clusters of silicon, single Si atoms evaporate due to 13 

the heat generated by such fusion. Violi21 first elucidated soot formation (inception) from first 14 

principles, consistent with experimental data, by combining MD with Monte Carlo simulations. 15 

In nanoparticle science, MD has helped elucidate how surface diffusion dominates the early 16 

stages of coalescence (fusion) of TiO222 and Ag23 or how Ag can occupy preferentially the 17 

surface of its nanoalloys with Au,24 leading to biocompatible Ag-Au nanoparticles.25 More 18 

recently, the method was used to explain such core-shell segregation of 45 bimetallic 19 

combinations26 while reactive MD simulations elucidated, for the first time, soot inception and 20 

coalescence as a function of cluster size and temperature.27 By uncovering the underlying 21 

mechanisms behind natural phenomena and processes utilizing atomic-level input, MD holds 22 

the merit of dramatically accelerating process scale-up and innovation.28 23 

 24 
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S2. SIMULATION SPECIFICS 1 

Force Field Parameters 2 

Table S1. Functional form and parameters specifying bonded and non-

bonded interactions in the FA model (Ref. 32). 

Bond Potential 

 l0 (Å) 

N-N 1.094 

O-O 1.208 

Lennard-Jones ( )
12 6

4LJ
σ σU r ε
r r

    = −    
     

 

 ε (kcal/mol) σ (Å) 

N-N 0.07232 3.32 

O-O 0.10330 2.99 

N-O 0.086433 3.155 

 3 

Table S2. Characteristic threshold distance rm for collisions by the hard-sphere (HS), Lennard-

Jones (LJ) and fully atomistic (FA) models. The rm refers to entire nitrogen or oxygen molecules 

for the HS and LJ models while for the FA, rm refers to nitrogen or oxygen atoms. 

 
                                                    rm (Å) 

nitrogen – nitrogen oxygen – oxygen oxygen - nitrogen 

HS model 3.798 3.467 3.6325 

LJ model 4.263 3.892 4.077 

FA model 3.726 3.356 3.541 

 4 

Selection of Ensemble 5 

Examination of selected atomistic trajectories from simulations in the NPT ensemble with the three 6 

MD models revealed that air molecules between two successive collisions do not move in a rectilinear 7 

path, but as Figure S1a shows their path exhibits many perturbations (zig-zags). This unexpected 8 

observation was traced to the dynamics of the barostat, since it is caused by the coupling between 9 
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volume fluctuations and equations of motion (i.e., the affine transformation of the atomistic positions 1 

during volume fluctuations to control pressure at its prescribed value) in the NPT ensemble. 2 

 3 

 4 

 5 

Figure S1. Typical trajectories of a molecule (blue sphere) before and after two successive collisions according to 6 
the HS model (equivalent to classic kinetic theory) in the course of an: a) NPT, b) NVT and c) NVE MD simulation. 7 
It illustrates the adverse impact (zig-zags instead of straight lines) of the barostat (NPT) on the trajectory of 8 
individual molecules between collisions. 9 
 10 

In contrast, Figures S1b and S1c show that molecular trajectories between collisions from NVT and 11 

NVE simulations, respectively, are straight lines, which indirectly implies that, in contrast to the barostat, 12 
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the thermostat does not perturb the molecular motion. In turn, this implies that results for the mean free 1 

path from NVT and NVE MD simulations (at the same temperature and density conditions) should be 2 

identical, which is indeed the case (see Figure S8 in Sec. S9 of supplementary material). Nevertheless, 3 

and to avoid even the tiniest effect of the thermostat, all numerical results, schematic representations, 4 

and videos reported here have been extracted from microcanonical ensemble MD trajectories (NVE), at 5 

mass density of ρ = 1.177 kg/m3 (corresponding to T= 300 K and P = 1 atm), unless otherwise noted. 6 

 7 

S3. THEORETICAL MODELS FOR THE GAS MEAN FREE PATH 8 

Hard-sphere model  9 

From the kinetic theory (hard-sphere model), the distance of closest approach, rm, for two spherical 10 

molecules is specified by solving3 11 
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for r, where ijµ  denotes the reduced mass of the two colliding molecules ( i j
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i j

m m
m m

µ =
+

where im  is the 13 

mass of molecule i and jm that of j). The deflection angle is3 14 
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From that angle, the collision integrals 16 
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with 
21

2 r

B

v

k T

µ
γ =  are computed to obtain analytical expressions for the transport coefficients. For example, 18 

the coefficient of viscosity to the first-order term in the Chapman-Enskog expansion involves the ( )2,2Ω19 

collision integral and is given3 by 20 
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For collisions between molecules of the same type i, the collision density from kinetic theory is3,29,54 2 

2 21
2ii i i iZ cπ σ=  n            (S5) 3 

where ni the number density and ic  the mean velocity of i molecules B8i ic k T mπ= where kB is the 4 

Boltzmann constant. For collisions between unlike molecules i and j, the collision density is3 5 

2
ij ij i jZ c n nπ σ=            (S6) 6 

where now B8 ijc k T π µ= . 7 

Τhe mean free path can be obtained from the mean flight time between collisions assuming an 8 

average velocity for the gas molecules:29,30,54 9 
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          (S7) 10 

where m denotes the mass and n the number density of gas molecules and Zi is the total number of 11 

collisions of a single gas molecule per unit time (Zii is the total number of collisions of gas molecules per 12 

unit time per unit volume (the collision density)). By substituting into Equation (S7) the collision density 13 

Zii from Equation (S5), the following alternative expression for λ (assuming also an ideal gas behavior) 14 

is obtained:3, 29 15 

2 2

1 1 1
2 2

Bk T
n P

λ
π σ π σ

= ⋅ = ⋅                      (S8) 16 

or, more precisely for a binary mixture with nearly equal-mass molecules:3,29 17 
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With σ1 = 3.467 Å and σ2 = 3.798 Å for oxygen and nitrogen (Table S2), and n1 and n2 corresponding to 19 

air mole fractions equal to 0.21 and 0.79, respectively, Equation (S9) yields λ1 = 71.1 nm and λ2 = 65.0 20 
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nm at 300 K and 1 atm, implying a value of λ equal to (0.21 x 71.1 + 0.79 x 65.0) nm = 66.3 nm. On the 1 

other hand, according to a widely adopted theoretical expression69 2 

1
8 f P
π ηλ

ρ
= ⋅ ⋅                        (S10) 3 

where η is the viscosity of air, ρ the density of air and f a numerical factor equal to 0.4987445, resulting 4 

in λ = 67.3 nm at the same conditions (using η = 18.5 μPas and ρ = 1.177 kg/m3). 5 

 6 

Free path distributions 7 

 For a gas molecule that is in equilibrium, the distribution p(λ΄) of free paths λ΄ is defined as:29,30 8 

( ) ( )1 expp ΄ ΄λ λ λ λ−= −           (S11) 9 

From Eq. (S11), the mean free path λ  is obtained as ( )
0

d΄ p ΄ ΄λ λ λ λ
∞

= ⋅ ⋅∫ . 10 

 11 

Variants of the hard-sphere model 12 

Despite that the classic hard-sphere model provides significant insight into gas motion and helps 13 

extract a wealth of analytical expressions for most of transport properties of gases, the corresponding 14 

temperature scalings of these properties are not accurate. To overcome this, Bird7 introduced the so-15 

called Variable Hard-Sphere (VHS) model. This model follows the simple isotropic hard-sphere angular 16 

scattering law but considers the collision diameter not to be constant but to vary as a function of the 17 

relative energy in the collision. Thus, according to the VHS model, the effective diameter dref at a 18 

reference temperature Tref is equal to12 19 
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         (S12) 20 

where m denotes the molar mass, ηref is the viscosity at the reference temperature Tref, and ω is the 21 

scaling index for the viscosity. The corresponding hard-sphere expression is recovered for ω = 0.5 22 

and reads12 23 
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Typical values of VHS parameters for nitrogen and air are reported in Table S3. 2 

 3 

Table S3. Values of the VHS parameters Tref, ηref, and ω (from Ref. 12). 

Gasses Tref ηref ω 

N2 273.15 16.56 0.74 

Air 273.15 17.19 0.77 

 4 

Then, according to the VHS model, the mean free path of the gas at equilibrium is equal to12 5 

11
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− 

  =   
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.          (S14) 6 

Almost a decade later, Koura and Matsumoto8 introduced yet another variant of the hard-sphere 7 

model, the so-called Variable Soft-Sphere (VSS) model. The VSS model utilizes the same total cross-8 

section model as the VHS model but includes a more realistic scattering model. In the same article, 9 

Koura and Matsumoto8 provide two expressions of the VHS model for the gas mean free path, based 10 

on viscosity η and diffusivity D measurements, respectively: 11 

( )( )( )( )
1

28 15 3 2 2 Bmk T nηλ η ξ ξ π= − −         (S15) 12 

( )( )( )
1

24 3 2 2D BD k T mλ ξ π= −          (S16) 13 

with ξ being the energy exponent related to the viscosity exponent 1 2ξ ω =  − .12 14 

The VSS model is an extension of the VHS model in the sense that the following expression is used to 15 

relate the impact parameter b to the collision angle χ: 16 

 ( )cos 2b d α χ=            (S17) 17 

with 1a ≥ . According to the VSS model, the viscosity and the diffusivity are given through 18 

 VSS VHS Sηη η=            (S18) 19 
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VSS VHS DD D S=            (S19) 1 

with the corresponding softness coefficients being equal to 2 

( )( )6 1 2S a a aη = + +             (S20) 3 

( )2 1DS a= +             (S21) 4 

From the above transport coefficients, the following mean free path expressions are derived: 5 

 , VSS , VHSSη η ηλ λ  =             (S22) 6 

, VSS , VHSD D DSλ λ  =            (S23) 7 

Also, according to the VSS model, the effective diameter of the gas molecules becomes 8 
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        (S24) 9 

For 1a = , Equation (S23) of the VSS model simplifies to Equation (S11) of the VHS model.  10 

Typical values of the parameters entering the VSS model for nitrogen (two data sets) and air are 11 

reported in Table S4. 12 

 13 

Table S4. Values of the parameters ξ, a , Sη , and DS  entering the VSS model for 

nitrogen and air (from Ref. 8). 

Gasses ξ α Sn SD 

N2 0.238 1.5059 1.0285 0.7981 

Air 0.268 1.5732 1.0266 0.7773 

 14 

The generalized hard-sphere (GHS) model was introduced by Hassan and Hash10,11 to enable a 15 

VHS-type of model to include the attractive portion of the interatomic potential energy surface (e.g., that 16 

appearing in the Lennard-Jones interaction) and thus a nonconstant power-law exponent for the 17 

transport properties. Unlike the VHS and VSS models, a reference diameter or reference cross-section 18 
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(i.e., reference relative velocity) cannot be defined for the GHS model, and values for all the GHS model 1 

parameters must be specified for each species pair.13  2 

Table S5 summarizes the predictions of the above variants of the hard-sphere model for the 3 

mean free path of air, based on the parameters in Tables S3 and S4.  4 

Table S5. Mean free path, λ, of nitrogen and air from theoretical expressions at T = 300 K 

and P = 1 atm.  

  

Nitrogen Air 

HS model, Chapman-Enskog, Equation (S12) 65 66.3 

Jennings (1988) expression, Equation (S10) 66 67.3 

VHS model, Equation (S11) 54 53.6 

VHS model, from the dynamic viscosity, Equation (S14) 54.8 54.2 

VHS model, from the diffusion coefficient, Equation (S15) 68.8 63.7 

VSS model, Equations (S13) and (S23) 55.4 55 

 5 

 6 

S4. MAXWELL-BOLTZMANN VELOCITY DISTRIBUTION 7 

The distribution of velocities from the three models were calculated and compared (Figure S2) 8 

to the Maxwell-Boltzmann expression for the velocity distribution:29 9 

( )
3 2 2

24 exp
2 2B B

m muf u u
k T k T

π
π

   
= −   

   
        (S25) 10 

where u is the molecular velocity and m the air molar mass. The distribution is normalized to 11 

unity. As expected, the results of all three MD models practically overlap with those from the 12 

above Maxwell-Boltzmann expression. 13 
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     1 

 2 

Figure S2. Molecular velocity distributions by the three MD models (HS, LJ, and FA) are in excellent agreement 3 
with those from the Maxwell-Boltzmann expression for the distribution of gas velocity.   4 
 5 

 6 

S5. IMPACT OF SELECTED MD SYSTEM SIZE 7 

The system size is selected by repeating simulations with larger and larger simulation cells till 8 

convergence of air properties is attained. Table S6 and Figure S3 below show the ρ, D and λ 9 

of air at T = 300 K and P = 1 atm with different system sizes from NVE simulations with the FA 10 

model. Clearly, when using simulation cells with, at least, 8’000 air molecules, the above air 11 

properties have reached their asymptotic values. In all of simulations, cells with 50’000 air 12 

molecules have been used. 13 

 14 

 15 
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Table S6. Air density, diffusivity and mean free path of air at 1 atm and 300 K by the FA model 

using progressively larger basic simulation cells (with increasing number of air molecules). 

Number of air 

molecules 

Box length 

(nm) 

Density 

(kg/m3) 

Diffusivity 

(cm2/s) 

Mean free path  

(nm) 

2000 38.0 1.75 ± 0.01 0.107 ± 0.006 23.5 ± 0.6 

4000 54.4 1.19 ± 0.01 0.202 ± 0.004 37.2 ± 1 

8000 68.8 1.18 ± 0.01 0.205 ± 0.006 38.4 ± 1 

10000 74.1 1.18 ± 0.01 0.206 ± 0.006 38.6 ± 1  

50000 126.7 1.18 ± 0.01 0.203 ± 0.005 38.5 ± 1 

 1 

 2 

Figure S3. The evolution of the mean free path (by direct averaging) by the FA model with simulation cells of 3 
increasing size (number of air molecules). Clearly, at least, 8’000 molecules are needed for reliable results while 4 
50’000 have been used in all simulations. The errors in the calculations are smaller than the symbol size. 5 

 6 

S6. HAZARD PLOT ANALYSIS OF SPURIOUS COLLISIONS 7 

Application of Hazard plot analysis61,62 to the population of free paths generated by the three models 8 

(Figure S4) is shown in Figure S5. It reveals that the overwhelming majority of free paths that are larger 9 

than 0.2 Å occur at about the same rate (0.00239 and 0.00259 Å-1 for the LJ and FA models, 10 

respectively). This analysis also reveals that a fraction of very short paths (shorter than 0.2 Å, Figure 11 

S5a,b insets) exists, occurring at a much faster rate (0.432 and 0.581 Å-1 for the LJ and FA models, 12 

respectively). 13 
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 1 

Figure S4. Probability density distribution of free paths (including spurious ones) for: a) the HS and LJ, and b) the 2 
FA models, by analyzing collisions from MD data generated over 6 ns of simulation time.  3 
 4 

  5 

Figure S5. Hazard plots for identification of spurious collisions with the: a) HS and LJ, and b) FA models. Most of 6 
free paths follow an exponential distribution, a straight line of constant slope equal to 0.00145, 0.00239, and 7 
0.00259 Å-1 for the HS, LJ, and FA models, respectively. The insets show the regime of spurious collisions 8 
corresponding to very short paths ( < 0.2 Å) occurring at a much faster rate than the rest (i.e., normal collisions). 9 
For the HS model, no spurious collisions occur, so no inset is shown. 10 
 11 

S7. STATISTICS OF MULTI-BODY COLLISIONS 12 

Figure S6 shows the distribution of collision times from the LJ and FA models. For two-body collisions 13 

(Fig. S6a), the distributions are similar qualitatively, exhibiting a maximum at t = 230 ps and t = 290 ps 14 

for the FA and the LJ model, respectively. Only a tiny amount (less than ~1%) of two-body collisions 15 
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disengage instantly (t ≤ 20 fs), in sharp contrast to the HS model. This behavior is attributed to the 1 

attractive part of the potential. On the overwhelming number of two-body collisions (~99%), the 2 

molecules stay together for some appreciable time that can be as large as 1000 fs for the FA model and 3 

550 fs for the LJ model. On the other hand, the distribution of disengagement times in the FA model is 4 

broader than in the LJ model, which is mainly related to the non-spherical shape of the molecules 5 

accounted by the FA model. In particular, due to their diatomic representation in the FA model, the 6 

molecules influence more space, thus increasing the range of both their repulsive and attractive 7 

interactions, resulting in a significantly more expanded distribution of disengagement times.  8 

  9 

 10 

Figure S6. Probability distributions of collision times for: a) two-, b) three- and c) four-body collisions, from the LJ 11 
(blue filled bars) and FA model (red open bars) simulations, respectively.  12 
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For the three-body collisions (Figure S6b), the distributions are similar not only qualitatively but also 1 

quantitatively. Again, only a small population of colliding molecules disengage instantly (~9.7% for the 2 

LJ and ~12.1 % for the FA model); the rest tend to stay together for up to ~ 500 fs. The corresponding 3 

distributions of four-body collisions are shown in Figure S6c. They are quite noisy due to their relatively 4 

low occurrence probability.  5 

Overall, the relatively simpler LJ model offers a pretty realistic description of the total number of 6 

collisions and their characteristic times despite its treating the molecules as perfect spheres, thus 7 

highlighting the critical role of accounting for the detailed molecular interactions by the force field. The 8 

distributions of disengagement times indicate that the impact of shape is less crucial than that of the 9 

force field but should not be neglected. Accounting for the detailed molecular shape, by making use of 10 

the FA model, the two-body collisions disentangle at longer times than in the LJ model, and the three-11 

body collisions are 58% more than those in the LJ model (Table S7).  12 

Table S7. Fractions (%) of two-, three- and four-body collisions as calculated by the detailed FA 

model and its two limiting cases that assume: a) fully elastic collisions between spherical air 

molecules (HS-model), and b) collisions between such molecules but with a Lennard-Jones 

potential between them (LJ-model). 

Collision-type \ % HS LJ FA 

2-body 100 99.47 99.16 

3-body 0 0.53 0.84 

4-body 0 < 0.0005  < 0.005  

 13 

In the HS model (results not shown), two-body collisions occur instantly due to the purely repulsive 14 

character of the potential, consistent with kinetic theory for rigid molecules that experience only elastic 15 

collisions; also, as already mentioned above, 3- and 4-body collisions never occurred with the HS model. 16 

 17 

S8. COLLISION DENSITIES FOR SPURIOUS COLLISIONS 18 

Accounting for all spurious collisions increases by an order of magnitude the collision densities (Table 19 

S8) by the LJ and FA models over those neglecting such collisions (Table I).  20 
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Table S8. Collision densities accounting for the spurious collisions by the Lennard-Jones 
(LJ) and fully atomistic (FA) models. 

 Collision densities (1033 m-3s-1) 

oxygen - oxygen nitrogen – nitrogen nitrogen – oxygen Total 

LJ Spurious 6.3 ± 0.1 105.2 ± 2.8  51.6 ± 1.2 163.1 ± 4.2 

FA Spurious 6.9 ± 0.2 114.1 ± 3.2  56.3 ± 1.4  177.3 ± 4.9 

 1 

 2 

S9. DISTRIBUTION OF FREE PATHS 3 

Figure S7 shows the evolution of the probability density distribution of free paths, λ΄, from the FA model 4 

for observation times tobs from 0.5 to 6 ns. With increasing tobs, the distribution shifts to the right as longer 5 

and longer paths are sampled. The shift rate slows down as the relative population of shorter λ’ tends 6 

to stabilize while longer ones that are added to the distribution are characterized by significantly lower 7 

probabilities of occurrence. As a result, the λ΄ distribution tends to converge and stabilize asymptotically. 8 

 9 

Figure S7. The probability density distribution p(λ΄) of free paths λ' from the simulations with the FA model at 10 
observation times tobs = 0.5, 1, and 6 ns. 11 
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To ensure that the λ΄ calculations do not depend on the initial configuration, we conducted a second 1 

MD simulation in the NVT ensemble, starting from an entirely different configuration of atomic positions 2 

and velocities for the three models (at the same temperature and density conditions with those in the 3 

NVE simulations). We again extracted the probability distributions of free paths and calculated their 4 

mean by directly averaging. Figure S8 shows the obtained λ as a function of observation time in two 5 

simulations for the HS, LJ, and FA models. The agreement of the results from the NVT and NVE 6 

independent simulations is remarkable; in all cases for tobs > 1 ns, in particular, the NVT (crosses) and 7 

NVE sets of results are practically indistinguishable. 8 

 9 

Figure S8. Comparison of the predictions of λ (by direct averaging) from MD simulations in NVT (crosses) and 10 
NVE (open symbols) by the three models HS (blue squares), LJ (green circles), and FA (red triangles). The errors 11 
in the calculations are smaller than the symbol size. 12 
 13 

S10. IMPACT OF COLLISION DISTANCE DEFINITION ON MEAN FREE PATH 14 

The λ values from the LJ and FA models in Table II have been computed for a collision distance 15 

equal to the characteristic LJ distance 21/6σij at which the force between a pair of atoms (i, j) changes 16 

from attractive to repulsive as they approach each other. For the HS model, on the other hand, the 17 

collision distance is equal to the diameter σij of the two molecules. Dongari et al.71 calculated by MD the 18 
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λ of neon gas modeled as perfect spheres subject to a LJ potential (like the present LJ model) but using 1 

σij as the collision distance. Their prediction for the λ of neon at T = 273.15 K and ρ = 0.9011 kg/m3 was 2 

λ = 126.2 nm, which is in agreement with the corresponding kinetic theory result that λ = 125.5 nm. To 3 

check the sensitivity of λ on the choice of the collision distance but also to directly compare the two 4 

works, we performed simulations of the same system and thermodynamic conditions with exactly the 5 

same LJ parameters as in Dongari et al.,71 using two values for rm (Fig. S9), equal to 21/6σ and σ (filled 6 

and open circles, respectively, in Fig. S10), where σ is the neon atom LJ diameter.  7 

 8 

 9 

Figure S9. Comparison of the two choices for collision distance, rm: rm = σ (i.e., rm / σ  = 1, vertical black dashed 10 
line), and rm = 21/6σ (i.e. rm / σ  = 21/6, vertical green dashed line). The former corresponds to the distance where 11 
the LJ potential energy becomes zero, while the latter to the distance where the force between the two becomes 12 
zero as it changes sign from negative (attractive) at rm / σ  > 21/6 to positive (repulsive) at rm / σ < 21/6. All LJ and 13 
FA model results have been obtained with rm = 21/6σ.  14 
 15 
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When rm = σ, the λ from our LJ model is λ = 127.0 ± 1.5 nm, which matches well that of Dongari et al.71 1 

after about 3 ns of observation time, 126.2 nm. However, when rm = 21/6σ, the results differ substantially, 2 

since λ = 85.2 ± 1.1 nm. This happens because when the collision distance is set to σ, all events 3 

corresponding to inter-atomic separations r in the interval σ < r < 21/6σ are not counted as collisions. 4 

Then collision densities are underestimated, and consequently, the λ is over-estimated as the LJ 5 

potential is essentially ignored. 6 

 7 

 8 

Figure S10. Comparison of computed mean free path as a function of observation time for neon gas molecules 9 
from Dongari et al.71 (diamonds) where rm = σ was used, and from our work with rm = σ (open circles) and rm = 10 
21/6σ  (filled circles). The errors in the calculations are smaller than the symbol size. In all three cases. the MD 11 
simulations were performed with the same LJ potential, at exactly the same T = 273.15 K and ρ = 0.9011 kg/m3. 12 
The difference between the two calculations indicates that one has to be careful in imposing the natural collision 13 
criterion (namely that rm = 21/6σ, filled circles) and not that pertinent to hard spheres (rm = σ, open symbols), as in 14 
the latter a significant number of collisions are neglected. 15 
 16 

 17 

 18 
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S11. IMPACT OF FORCE FIELD PARAMETERS ON MEAN FREE PATH 1 

Table S9. Intermolecular parameter values for the different FA force fields for air. 

Model 

Lennard-Jones potential parameters 

N-N O-O 

σ (Å) ε (kcal/mole) σ (Å) ε (kcal/mole) 

Zambrano et al.32 3.32 0.07232 2.99 0.10330 

Wang et al.35 3.614 0.0797 3.297 0.1047 

Bouanich36 3.29084 0.0739 3.0145 0.102823 

Vrabec et al.37 3.3211 0.06935 3.1062 0.085813 

Vacha et al.38 4.201 0.1973 2.955 0.2029 

Zhang et al.39 3.31 0.07155 3.02 0.097373 

Tokumasu and Matsumoto41 3.17 0.093857 - - 

Kosyanchuk and Yakunchikov43 3.4 0.043321 - - 
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Table S10. The density, diffusivity, viscosity and mean free path of air at T = 300 K and P 

= 1 atm, using different force fields in the FA model. 

 ρ (kg/m3) D (cm2/s) η  (μPas) λ (nm) 

Experimental data 1.17 0.203 18.5 - 

Zambrano et al.32 1.17 0.203 18.5 ± 0.1 38.5 ± 1 

Wang et al.35 0.98 0.241 20.1 ± 0.1 39.8 ± 1 

Bouanich36 1.17  0.213 18.4 ± 0.1 38.3 ± 1 

Vrabec et al.37 1.16 0.214 18.1 ± 0.2 38.5 ± 1 

Vacha et al.38  1.18 0.103 9.4 ± 0.2 20.5 ± 0.6 

Zhang et al.39 1.17 0.212 18.2 ± 0.2 38.4 ± 1 

 3 

Table S11. The density, diffusivity, viscosity and mean free path at T = 300 K and P = 1 atm of pure 

nitrogen with three different force fields (a purely classical one and two based on ab-initio 

parameterization) and comparison with experimental data. 

 ρ (kg/m3) D (cm2/s) η  (μPas) λ (nm) 

Experimental data63,65,72,73 1.126 0.219 17.8  - 

Zambrano et al.32 1.14 0.213 ± 0.003 17.4 ± 0.3  37.6 

Tokumasu and Matsumoto41 1.15 0.215± 0.003 18.6 ± 0.3 38.3 

Kosyanchuk and Yakunchikov43 1.14  0.222± 0.003 19.5 ± 0.5 40.5 

 4 
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 1 

Figure S11. The mean free path of air as a function of observation time (symbols) from several fully atomistic MD 2 
models. The results have been obtained by directly averaging over the corresponding density distributions of free 3 
paths. The errors in the calculations are smaller than the symbol size. The λ values reported in the legend indicate 4 
the asymptotic values in the limit of long observation times, obtained by fitting the simulation data with a hyperbolic 5 
function and taking the limit tobs → ∞.  6 
 7 

 8 

Figure S12. Mean free path of pure nitrogen as a function of observation time (symbols) from three fully atomistic 9 

models: a purely classical one32 and two based on ab initio parametrization.41,43 The results were obtained by 10 

directly averaging over the corresponding density distributions of free paths. The errors in the calculations are 11 

smaller than the symbol size. 12 


