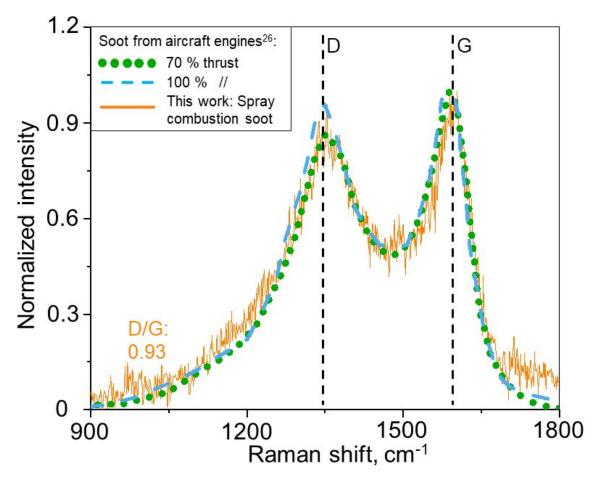

1	Supplementary Information for					
2	Towards elimination of soot emissions					
3	from jet fuel combustion					
4	Georgios A. Kelesidis ^{1,2} , Amogh Nagarkar ¹ , Una Trivanovic ¹ and Sotiris E. Pratsinis ^{1,*}					
5	¹ Particle Technology Laboratory, Institute of Energy and Process Engineering,					
6	Department of Mechanical and Process Engineering, ETH Zürich,					
7	Sonneggstrasse 3, CH-8092 Zürich, Switzerland.					
8	² Nanoscience and Advanced Material Center, Environmental and Occupation Health Science					
9	Institute, School of Public Health, Rutgers University,					
10	Frelinghuysen 170, 08854 Piscataway, NJ, USA.					
11	*Corresponding author: sotiris.pratsinis@ptl.mavt.ethz.ch					
12						
13	5 Pages,					
14	2 Tables					
15	& 4 Figures					
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26 27						
27 28						
28 29						
	S1					


Summary: 30 31 32 Figure S1.....p. S2 33 34 // S2.....p. S3 35 36 S3......p. S3 // 37 38 S4......p. S4 // 39 40 Table S1.....p. S4 41 42 // s2.....p. S4 43 44 45

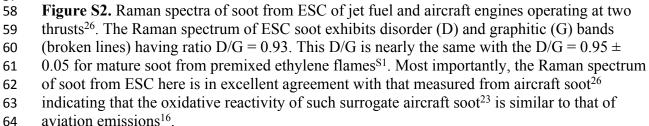

46

Figure S1. Schematic of the experimental set up for generation and elimination of soot from 47 enclosed spray combustion (ESC) of jet fuel. Jet A fuel is atomized and combusted using an 48 external twin fluid nozzle²⁸ enclosed in two, 30 cm long quartz tubes in series²⁹. A torus ring³⁰ 49 with 12 jet outlets between the two tubes was used to introduce 20 L/min of N_2 with $[O_2] = 0$ -50 25 vol %. Particles are sampled at various heights above the burner (HAB) using a straight 51 tube sampler and diluted with nitrogen and air using a rotating dilution system³². The diluted 52 soot aerosol flows through an X-ray neutralizer followed by a scanning mobility particle sizer 53 (SMPS). Soot nanoparticles are also deposited on a glass fiber filter at the top of the unit. The 54

collected soot is analyzed offline by microcopy, N₂ adsorption, Raman spectroscopy, X-ray
diffraction (XRD) and thermogravimetric analysis (TGA)²³.

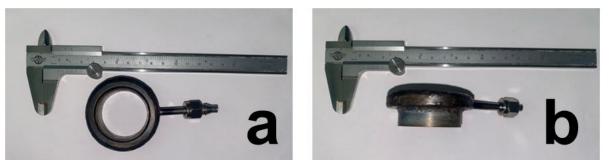


Figure S3. Top (a) and side (b) view of torus ring used here for injection of O₂-containing gas along with a ruler for reference.

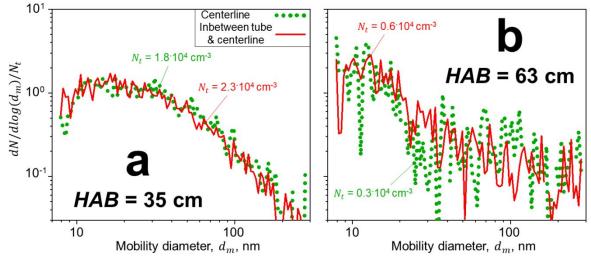


Figure S4. Normalized mobility size distributions of soot from ESC of jet A1 fuel and oxidized by flowing through a torus ring 12 upwards-angled swirling N_2 jets having $[O_2] = 20$

vol % at the flame centerline (r/R = 0, dotted lines) and in-between enclosing tube wall &

- centerline (1 cm away from each, r/R = 0.5; solid lines) at *HAB* of 35 (a) and 63 cm (b) along
- 80 with the corresponding total particle concentrations, N_t .

81

Table S1. Soot N_t , f_v and \overline{d}_m at the centerline $(r/R = 0)$ and in-between there and								
tube wall $(r/R = 0.5)$ at $HAB = 25$ cm which is 5 cm below the torus ring.								
	Centerline,	In-between centerline and tube wall,						
	r/R = 0	<i>r/R</i> =0.5						
N_t , ·10 ⁶ cm ⁻³	3.4	7.1						
N_t , 10° cm ²	(2.4 - 5.1)	(4.9 - 10.2)						
£ .10-10	3.5	9.3						
$f_{\nu}, \cdot 10^{-10}$	(2.4 - 5.1)	(6.9 - 12.6)						
\overline{d}	100.5	113.2						
a_m , nm	(98.6 - 102.6)	(109.7 - 116.9)						

82

Table S2. Soot N_t and \overline{d}_m at the centerline $(r/R = 0)$ and in-between there and tube wall (r/R)									
= 0.5) at <i>HAB</i> = 35 and 63 cm.									
	HA	B = 35 cm			63 cm				
	Centerline, r/R = 0	In-between centerline and tube wall, $r/R=0.5$		Centerline, r/R = 0	In-between centerline and tube wall, $r/R=0.5$				
N_t , ·10 ⁴ cm ⁻³	1.8 (0.2 - 6.6)	2.3 (0.6 - 4.8)		0.3 (0.03 - 2.9)	0.6 (0.1 - 4.6)				
\overline{d}_m , nm	33.4 (27.4 - 54.6)	31 (24.6 - 38.4)		31.5 (8.9 - 73.8)	27.2 (15.6 - 52.8)				

83

84 **References:**

- 85 S1 Commodo, M., Serra, G., Bocchicchio, S., Minutolo, P., Tommasini, M. & D'Anna, A.
- 86 Monitoring flame soot maturity by variable temperature Raman spectroscopy. *Fuel* **321**,
- 87 124006 (2022) https://doi.org:10.1016/j.fuel.2022.124006.