Flame Aerosol Synthesis

From Lab-Scale Experiments to Pilot Plant Production

Karsten Wegner Wegner Consulting & ETH Zürich

How everything started...

Prototype diffusion flame microreactor

Material: copper, welded

Fabrication: hand-made in Cincinnati (OH)

Characteristics: 6 "concentric" tubes 1/10", 1/6", 7/32", ...

The Swiss response:

Diffusion flame microreactor

Material: stainless steel 1.4435

Fabrication: machined at ETH workshop

Characteristics: 6 concentric! tubes: 2.54mm, 4.23mm, 5.56mm,...

Flame aerosol synthesis set-up

The first nanoparticles at ETH-PTL ~5 g/h silica from hexamethyldisiloxane (HMDSO)

BET-equivalent Particle Diameter, nm 100 80 Δ 60 Δ 40 Δ 20 Δ Λ Λ 0 2 8 10 6 0 4 Oxygen Flow Rate, L/min

Early pilot-scale production

Hydrogen-oxygen diffusion burner obtained from German Aerospace Research Center (DLR)

Kammler, Mueller, Senn, Pratsinis, AIChE J. 47, 1533 (2001) Kammler, Mädler, Pratsinis, Chem. Eng. Technol. 24, 583 (2001)

Burner Operation Lines

Wegner and Pratsinis, Chem. Eng. Sci. 58, 4581 (2003)

Coaxial Jet Mixing

Cold flow CFD profiles:

Diffusion Flames:

t_{reaction} << t_{mixing}

Particle Formation upon mixing of precursor and oxidant at shear layer.

Similar reactant mixing for similar velocity difference $\Delta v = v_{Ox} - v_{Fuel}$

$$\underbrace{V_{Ar+Prec.} \approx V_{CH_4}}_{V_{Fuel}} \leq V_{Ox}$$

Single Operation Line $d_p = f(\Delta v)$

Scaling the SiO₂ Production Rate

Wegner and Pratsinis, Chem. Eng. Sci. 58, 4581 (2003)

Products of Conventional Flame Processes

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Few metal oxides accessible due to limited availability of lowcost precursors with high vapor pressure at moderate Temp.

At ETH-PTL: SiO_2 , TiO_2 - but also first flame-made catalysts: vanadia/titania at small and pilot scale.

Stark, Wegner, Pratsinis, Baiker, *J. Catal.* **197**, 182 (2001) Stark, Baiker, Pratsinis, *Part. Part. Sys. Char.* **19**, 306 (2002)

Flame Spray Pyrolysis (FSP) Technology

Mädler, Kammler, Mueller, Pratsinis, J. Aerosol Sci. 33, 369 (2002).

Accessible Products by FSP

Noble metals and oxides of almost all periodic table elements

Flame synthesis using vaporous precursors

Benefits of the FSP Process

Broad range of product materials

- Multi-component particles
- Good control of particle properties
- High purity powders
- Thermally stable powders
- Environmentally friendly process
- Short process chain
- Standard equipment and materials
- Low cost energy source

Recent review article: Strobel and Pratsinis, J. Mater. Chem. 17, 4743 (2007).

Scale-up from 10 to ~500 g/h

ETH Lab-Scale

ETH Pilot System

Mueller, Mädler, Pratsinis, *Chem. Eng. Sci.* **58**, 1969 (2003). Mueller, Jossen, Pratsinis, *J. Am. Ceram. Soc.* **87**, 197 (2004).

Process Flow Diagram

1 kg/h Pilot Plant at FlamePowders

Process Design Considerations

Product specs., production rate, raw materials Purity requirements Available infrastructure

Chemicals used? Batch/continuous? Precursor preparation? Precursor stability? Quality control? Cleanability? Safety!

FSP Reactor

Flow-/production rates? Auxiliary gases? Stability of combustion? Process Control? Energy utilisation CO₂ reduction Containment! Safety!

Filtration area? Flow field Nanopowder discharge Off-gas treatment Product or clean side filter change? Product change? Containment! Safety!

Nanoparticle containment and safety concept. Process automatization

100 g/h Pilot Plant for NanoCentral

Location: Johnson Matthey Research Center, UK www.na

www.nanocentral.eu

Automated FSP Unit at L'Urederra

Production rate 0.5 – 1.0 kg/h, continuous operation Process control by PLC

Under construction: 1 kg/h unit

Back to the small scale: Combined FSP-cluster beam deposition

Nanostructured particulate films

Patterned deposition

Thank you very much! Questions?