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Motivation

Soot impact on health and environment strongly depends on its primary particle size, d,, and effective density, p.rr.> Scaling laws based on clusters of primary
particles in point contact (agglomerates) or chemically bonded (aggregates) have been used in tandem with mass-mobility measurements to obtain p,r;* or dp,2
respectively. Here, such relationships are derived by investigating soot aggregate dynamics with a Discrete Element Model (DEM) for agglomeration & surface growth.

DEM-derived Evolution of Nascent to Mature Soot

Morphology Dynamics of Nascent and Mature Soot
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Evolution of soot mean mobility, d,,,, primary particle (PP) diameter, d,,, and standard deviation, g,
for maximum volume fractions, f, may, of 10° and 10°7.
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Evolution of DEM-derived Dy (solid lines) and Dy, (broken lines) of soot aggregates growing
by agglomeration and surface growth (SG) compared to microscopy and mass-mobility
measurements of nascent* and mature soot,* respectively.

Dynamics of Soot Size Distribution (SD)
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Evolution of g, 5, of soot growing by agglomeration and SG for different f;, max-
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The relationship between agglomerate/aggregate dy,/d, and the number of PPs, n,,, or the effective density, p.yr, obtained by | Estimation of d,, from combined mass-mobility measurements,* a scaling law ?
different models (lines) is compared to mass-mobility measurements of mature soot aggregates (symbols).* and the DEM-derived projected area exponent, D,, and prefactor, k,,.
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