
Separation Process Technology I

Aspen Tutorial 1: Absorption of H_2S with the Rectisol process

In this tutorial, we want to use a commercial software platform to perform the removal of hydrogen sulfide from a sour gas.

Let us consider the following configuration:

Where the entering sour gas is specified as follow:

- Composition, [mole frac.]
 - CO₂ 0.0302
 - H₂S 0.0019
 - CO 0.5886
 - N_2 0.0977
 - H₂ 0.2722
 - AR 0.0094
- Pressure: 40 bar
- Flow rate: 50 kg/s
- Temperature: -10°C

The chosen process for H₂S removal is the Rectisol Process.

25 May 2021

It is required to:

- I. Develop an equilibrium-based Aspen simulation for the considered process and:
 - a. Identify the L/G that leads to the specification $H_2S_{cleangas} = 0.1$ ppm.
 - b. Investigate the effects of the temperature in the lean solution when the specification $H_2S_{cleangas} = 0.1$ ppm is kept constant
- II. Develop a rate-based Aspen simulation and:
 - a. Investigate how the packing height and the L/G affect the system and identify the design conditions for which the specification $H_2S_{cleangas} = 0.1$ ppm is guaranteed.

Assumptions for the simulations:

Property method: PC-SAFT (Perturbated Chain Statistical Association Fluid Theory) 5 equilibrium stages Temperature range for task I.b: T_{min} = -60 °C T_{max}= -20 °C

Packing type for task II: Type: INTX Vendor: generic Material: ceramic Dimension: 50mm Fractional approach to maximum capacity: 0.6