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Note for students — HS 2016

For the preparation of the exam the following parts of the script are of less impor-
tance:

section 1.3;

eqs. (1.11), (1.12) and (1.16);

chapter 2.

The analysis of section 3.3 and 3.4 should be limited to what has been done during
the lecture.
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SYMBOLS

Latin Letters
A Total membrane area m2

a Activity coefficient -

c Molar concentration mol/m3

D Diffusion coefficient m2/s

D Maxwell-Stefan diffusion coefficient m2/s

fα Fugacity of component α Pa

J̄ Molar flux across the membrane mol/(m2 s)

Ks Sorption coefficient mi
3/mm

3

K Darcy permeability coefficient mol / (m2 Pa s)

L Membrane module length m

M Molar weight kg/kmol

Nc Number of components -

ṅ Molar flow rate mol/s

P Product purity -

v



vi

p Total pressure Pa

pi Partial pressure of component i Pa

p∗α Vapor pressure of component α Pa

Q Membrane permeability mol/(m s Pa)

R Product recovery -

r Radius m

s Surface m2

T Temperature K

v̄ Velocity m/s

v̂ Specific volume m3/kg

ṽ Molar volume m3/mol

W Membrane module width m

x Molar fraction in liquid phase mol/mol

y Molar fraction in gas phase -

z Axial coordinate m

Greek Letters
α Membrane selectivity -

α∗ Separation factor -

β Permeate to retentate pressure ratio -

γ Retentate to permeate pressure ratio -

δ Membrane thickness m

π Osmotic pressure Pa

σ Dimensionless membrane area coordinate -

θ Stage cut -

Φ Dimensionless membrane flux -

φ Electric potential V

ψ Dimensionless retentate mole flow -

ω Dimensionless permeate mole flow -

Subscripts
i Component i

F Feed stream

m Membrane

P Permeate stream

R Retentate stream

Superscripts
I Membrane interface
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MEMBRANES THEORY

Membrane separations
Rate controlled separation processes. Copyright c© 2016 SPL
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2 MEMBRANES THEORY

1.1 Introduction

A generic separation process of a mixture can be achieved applying different tech-
nologies e. g. distillation, adsorption, absorbtion or membranes. Each technology
features its own transport equations but from an overall point they can be regarded
as similar/competitive solutions to separate a generic (A,B) mixture into A and B. A

OVERALL PLANT

A  + B A +(B)

B +(A)

CHEMICAL ABSORPTION

MEMBRANES

ADSORPTION

T, p , n , y

Figure 1.1: Generic process overview

membrane is a selective barrier that allows the passage of certain components and
retains others in the liquid or gas mixture. The stream that enters the membrane
is called feed-stream, the fluid that passes through the membrane is known as the
permeate while the fluid that contains the retained components is named retentate
or concentrate. Membranes can therefore be assembled into modules in order to
perform a separation process that achieves the desired process specifications.
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1.2 Mass Balances Over A Membrane Module

By considering a control volume that includes the whole membrane module it is pos-
sible to impose the total and single species mass balance constraints.

Overall mass balance (hyp.: no chemical reactions)

ṅf = ṅp + ṅr =
∑
i

ṅfxi,f =
∑
i

ṅpxi,p +
∑
i

ṅrxi,r (1.1)

where,

ṅf , is the total molar flow-rate in the feed stream;

ṅp is the total molar flow-rate in the permeate stream;

ṅr is the total molar flow-rate in the retentate stream;

xi is the molar fraction of component i.

Single species overall mass balance

ṅfxi,f = ṅpxi,p + ṅrxi,r (1.2)

which is complemented by the closure constraint on molar fractions for each process
stream: ∑

i

xi,f =
∑
i

xi,r =
∑
i

xi,p = 1 (1.3)

By considering a control volume that includes the whole membrane module it is
possible to frame the total mass flux across the membrane into the mass balance

ṅf = ṅr + ṅp = ṅr +

∫
A

JdA (1.4)

where,

J =
∑
Ji is the total molar flux of permeating species;

Ji represents the molar flux equation for species i across the membrane;

A represents the membrane section area where mass transfer occurs.
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y
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Feed
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Figure 1.2: Mass balance over a membrane module.

In order to quantitatively solve the membrane mass balance equations it is con-
venient consider a local approach. The local separation process can be described
by choosing an infinitesimally small arbitrary control volume within the membrane.
The single species mass balance holds:

(xi,rṅr)|y−(xi,rṅr)|y+dy= JidA (1.5)

Figure 1.2 resembles a local section of a membrane module. Through the use of
this scheme it is possible to define the input data which represents the design speci-
fications (e. g. feed flow rate, composition and operative conditions), as well as the
output variables (e. g. membrane area) involved in the process.

It is therefore necessary to develop mathematical models able to describe each generic
flux through the membrane as a function of the physical variables of the system.
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1.3 Description of mass transfer across selectively permeable mem-
branes

Mass transport across membranes involves different driving forces. The wide range
of behavior resulting from these various driving forces can be described compactly
via the framework provided by non-equilibrium thermodynamics (NET). NET makes
use of four postulates above and beyond those of equilibrium thermodynamics:

the equilibrium thermodynamic relations apply to systems that are not in equi-
librium, provided that gradients are not too large (local equilibrium);

all fluxes in the system may be written as linear relations involving all the driv-
ing forces;

no coupling of fluxes and forces occurs if the difference in tensorial order of the
flux and force is an odd number (Curie’s Postulate);

in the absence of magnetic fields, the matrix of the coefficients in the flux-force
relations is symmetric (Onsager’s reciprocal relations).

The description of mass transfer when multiple driving forces are present is given
by the Maxwell-Stefan equations. Eventhough the derivation of these equations is
not in the scope of this script, it is important to understand how these equations are
derived:

the starting point for derivation of Maxwell-Stefan equations is the entropy-
balance equation for irreversible processes (entropy remains a valuable state
function in non-equilibrium under the local equilibrium assumption).

Entropy balance

ρ
DŜ

Dt
= −(∇ · J̄s) + gs (1.6)

where,

ρ is the density of the mixture;

J̄s is the entropy flux vector;

gs is the entropy generation per unit volume.

A lagrangian approach is used where the evolution of a specific control volume ele-
ment is followed in time.
The derivation of the entropy balance follows

DS

Dt
=

dS|e
dt︸ ︷︷ ︸

Rate of exchange with exterior

+
dS|i
dt︸︷︷︸

Rate of internal production
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Appling the divergence theorem over a generic control volume of surface Σ
(
∫
V
∇ · F̄ dV =

∮
∂V

F̄ · dS̄)∫
V

ρ
DŜ

Dt
= −

∫
Σ

J̄s · n̄ dΣ +

∫
V

gs dV = −
∫
V

∇ · J̄s dV +

∫
V

gs dV

Due to the arbitrary chosen control volume the local balance, eq. 1.6, is obtained
equating the arguments of the integrals.
By using the conservation laws for mass, momentum and energy, together with the
equilibrium relation dU = TdS − pdV +

∑
i
µi
Mi
dni, it is possible to express the

entropy flux J̄s and entropy generation gs as a sum of products of fluxes and forces
(gs) or sum of fluxes (J̄s).
The result of this procedure brings to the Maxwell-Stefan generalized equations:

∇xα =

N 6=α∑
β=1

xαxβ
Dαβ

(v̄α − v̄β) = −xα∇ ln aα︸ ︷︷ ︸
Concentration diffusion term

+

− 1

cRT

[
(φα − ωα)∇p︸ ︷︷ ︸

Pressure diffusion term

−ραḡα + ωα

N∑
β=1

ρβ ḡβ︸ ︷︷ ︸
Forced diffusion term

]
+

−
N 6=α∑
β=1

xαxβ
Dαβ

(
DT
α

ρα
−
DT
β

ρβ

)
∇T︸ ︷︷ ︸

Thermal diffusion term
(1.7)

where,

Dαβ are the Maxwell-Stefan diffusivities;

DT
i is the thermal diffusivities of component i.

For binary diffusion in gases or liquids

J̄α = cDαβ∇xα = −cDαβ

[
xα∇ ln aα+

+
1

cRT

(
(φα − ωα)∇p− ρωαωβ(ḡα − ḡβ)

)
+ kT∇ lnT

]
(1.8)

The contribution of external forces (gravity field, electrostatic field and mechanical
forces) can be written as

ḡα = ḡ − zαF

Mα
∇φ+ δα,m

1

ρm
∇p (1.9)
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The term δα,m
1
ρm
∇p represents the mechanical constraint that keeps the membrane

stationary against external pressure gradients and internal viscous drag (typically a
wire mesh or equivalent structure is used).
Membranes consist of an insoluble, selective permeable matrix m and one or more
permeating species α, β.
The following constraints hold:

negligible curvature: δ << Rcurv (mass transport in unidirectional and perpen-
dicular to the membrane surface);

immobility of the matrix: vm = 0;

pseudosteady behaviour: ∂cα
∂t = 0 (diffusional terms within the membrane are

short compared to those in the adjacent solution;

no thermal diffusion.

It follows that the Maxwell-Stefan equations can be slightly simplified:

the term ωα∇p can be set to zero as the membrane is stationary;

the thermal diffusion term can be neglected;

since the membrane is, to an excellent approximation, incompressible and of
uniform chemical composition, the equivalent body force will be uniform and
of magnitude ḡ = 1

ρm
∇p.

The resulting Maxwell-Stefan equation can be therefore written as:

N∑
β=1

RT

Dαβc
(xβN̄α − xαN̄β) =

= −xαRT∇ ln aα − zαF∇V +

(
δα,m
ρm
− V̄α

)
∇p

(1.10)

where N̄α and N̄β represent the molar fluxes, δα,m the Kronecker delta and V̄α the
partial molar volume of α.
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Figure 1.3: Schematic representation of the basic types of membrane

Along with the Maxwell-Stefan equation for membrane transport, a generally ap-
plicable set of boundary conditions has to be defined: these conditions are obtained
by requiring the ”total potential” of each species to be continuous across the bound-
ary of the membrane and the solution bathing the membrane (local equilibrium).
Since conditions within the membrane are very difficult, or even impossible, to deter-
mine, this equation is primarly useful to obtain a qualitative understanding of mem-
brane behavior. What is the way to proceed then? The approach is to use simplified
models (based on the Maxwell-Stefan equation introducing simplifications) that al-
low to describe a membrane quantitatively with a good agreement with respect to
experimental data. The model will be therefore simplified according to the type of
membrane considered. There are many transport mechanisms involved depending
on the type of selective barrier:

porous membranes1 (mean pore size diameter 5000 - 1 nm)
In porous membranes molecules are transported by a pressure-driven convective
flow through tiny membrane pores (pores size bigger that 10−9 m). A differ-
ence in steric hindrances between the components’ molecules and the mem-
brane material leads therefore to different compounds permeabilities. The per-
meant concentration within a porous membrane is uniform and the only driving
force across the membrane is the pressure gradient.

homogeneous membranes1 (mean pore size diameter less than 1 nm)
In dense membranes molecules of the different compounds first dissolve into the
membrane matrix and then diffuse through the membrane under a concentration
gradient. The permeability of each species is therefore affected by the solubil-

1Considered in rate controlled separation processes class
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ity of each compound into the membrane material (thermodynamic aspect) and
by the rate at which each component diffuses through the membrane (kinetics
aspect).The average pore diameter in dense polymer membranes is within the
thermal motion of the polymer chains from which the membrane is made of.

facilitated diffusion/charged membranes
In a carrier-mediated diffusion membrane the movement of molecules across the
membrane occurs via very specific carrier-molecules that are embedded within
the membrane. The permselectivity towards a component depends mainly on
the specificity of the carrier molecule. Through the use of specially tailored
carriers, extremely high selectivities can be obtained. The component to be
removed can be gaseous or liquid, ionic or non-ionic. To some extent the func-
tionality of this kind of membranes approaches that of a cell.

active transport
In membranes where active transport occurs the movement of molecules (against
some concentration gradients or other form of resistance) across the mem-
brane requires energy. Unlike passive transport, which uses natural entropy
of molecules moving down a gradient, active transport uses external sources of
energy (electrochemical gradients, etc.) to perform a separation.
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(a) Microporous membranes sepa-
rate by molecular filtration.

(b) Dense solution-diffusion mem-
branes separate because of differ-
ences in the solubility and mobility
of permeants dissolved in the mem-
brane material.

Figure 1.4: Membranes mass transfer models

1.4 Models For Mass Transfer Through Membranes

Two basic models2 for mass transfer through the membrane will be considered:

the hydrodynamic model for porous membranes;

the solution-diffusion model for dense membranes.

Through a manipulation of the simplified Maxwell-Stefan equation (eq. 1.10) it
is possible to express the molar flux of component α as:

N̄α = J̄α = −cDαβ

[
xα∇ ln aα +

1

cRT
cαv̄α∇p− ραḡα + ωα

N∑
β=1

ρβ ḡβ

]
(1.11)

In the case of binary mixtures the left term in eq. 1.10 can be written as

N∑
β=1

1

Dαβc
(xβN̄α − xαN̄β) =

1

Dαβc
N̄α = − 1

Dαβc
N̄β (1.12)

due to the fact that xα + xβ = 1 and N̄α + N̄β = 0̄.

2J. G. Wijmans, R. W. Baker, The solution-diffusion model: a review, Journal of Membrane Science 107
(1995) 1-21.



MODELS FOR MASS TRANSFER THROUGH MEMBRANES 11

Chemical potential µi 

Pressure pr

Solvent activity ɣixi 

Porous-flow model

Retentate
side Membrane Permeate

side

(a) Porous-flow model.

Pressure pr

Solution-diffusion model

High pressure 
solution Membrane Low-pressure 

solution

(b) Solution-diffusion permeation model.

Figure 1.5: Comparison between the hydrodynamic permeation and solution-
diffusion permeation models for mass transfer through the membrane.

1.4.1 Pore-flow (hydrodynamic) Model

In the framework of porous membranes the mass transport mechanism is model as
a pure convective motion of molecules across the membrane due to a superimposed
pressure gradient. Eq. 1.11 can be reconsidered in light of the simplification intro-
duced by this model.

J̄α = −cDαβ

[
1

cRT
cαv̄α∇p− ραḡα

]
(1.13)

It follows that

J̄α = −Dαβ

RT
v̄αcα∇p = −cαK

′ dp

dz
(1.14)

Eq. 1.14 is named Darcy equation where the following terms represents

dp
dz : pressure gradient;

cα: concentration of component A in the medium;

K
′
: permeability of the medium.

1.4.2 Solution-Diffusion Model

In the solution-diffusion model, transport occurs only by diffusion. The component
that needs to be transported must first dissolve in the membrane.
The molar flux of component α can be therefore expressed using eq. 1.10

J̄α = −cDαβxα∇ ln aα (1.15)
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since

no pressure gradient exists within the membrane;

no external forces act on the membrane.

In the solution-diffusion model, the pressure within the membrane is constant at the
high-pressure value (pr), and the gradient in chemical potential across the membrane
is expressed as a smooth gradient in solvent activity (γsxs) as shown in fig. 1.5.
By introducing the definition of activity, aα = γαxα, in eq. 1.15

J̄α = −cDαβ

(
∂ ln aα
∂ lnxα

)
T,p

∇xα = −cDαβ

[
1 +

(
∂ ln γα
∂ lnxα

)
T,p

]
∇xα (1.16)

Under the hypothesis of perpendicular flux it is possible to write

J̄α = −cDα,β∇xα = −cDα,β
dxα
dz

n̂ (1.17)

where,

Dα,β = Dαβ for an ideal mixture;

Dα,β = Dαβ

[
1 +

(
∂ ln γα
∂ ln xα

)
T,p

]
for a non-ideal mixture.

Eq. 1.17 is the simplified Fick equation with diffusivities accounting for mixtures
non-ideality.
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The flux equations respectively for porous membranes and homogeneous mem-
branes have been obtained. Making use of the expression of the flux in the continuity
equation

∂ρ

∂t
+∇ · (ρv̄) = 0 Overall continuity equation

c
Dxα
Dt

= −∇ · J̄α + (Rα − xα
N∑
β

Rβ)

ρ
Dv̄

Dt
= −∇p+ µ∇2v̄ + ρḡ Momentum

ρĉp
DT

Dt
= −∇ · q̄ −

(
∂ ln ρ

∂ lnT

)
p

Dp

Dt
− τττ : ∇v̄ Energy

(1.18)

All the latter equations needs to be solved simultaneously in order to obtain the
T, p, ω distributions.
Considering the continuity equation for a species α in molar term

c
Dxα
Dt

= −∇ · J̄α + (Rα − xα
N∑
β

Rβ) (1.19)

For a steady state process, with fixed membrane and no reactions inside the mem-
brane

∇ · J̄α = 0 (1.20)

Also, considering the mass transfer to happen only perpendicularly to the membrane

dJα
dz

= 0 (1.21)

Considering the flux equations for porous and homogeneous membranes (1.14 and 1.17)
and substituting them into the continuity equation

d

dz

(
cDα,β

dxα
dz

)
= 0 Solution-Diffusion model

d

dz

(
cDα,β

dp

dz

)
= 0 Pore-flow model

(1.22)

In the framework of the solution-diffusion model the aim is to link the flux equation
and the continuity equation to the conditions in the mixture bathing the membrane.
It is therefore necessary to consider the conditions at the membrane interfaces: local
equilibrium assumption between the mixture and the membrane surface on both sides
of the membrane (permeate or retentate) has been made.
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d

dz

(
cDα,β

dxα
dz

)
= 0

z = 0; xα = xIα,R

z = δ; xα = xIα,P

(1.23)

General solution x(z)=A2z+A1, where A1, A2 can be retrieved from the bound-
ary conditions obtaining

Jα = cDα,β

xIα,R − xIα,P
δ

(1.24)

where,

xIα,R, c
I
α,R, x

I
α,P , c

I
α,P : molar fractions and compositions for componentαwithin

the membrane but either at the feed or permeate interface;

δ: membrane thickness.

Determination of the species compositions at the membrane interfaces

xIα,R and xIα,P have to be expressed as a function of the conditions outside the mem-
brane. The adopted procedure follows:

local equilibrium at the membrane interface;

obtaining xIα,R and xIα,P from isofugacity condition;

substituting xIα,R and xIα,P into the flux equation.

The general form for liquid and gas fugacities in a liquid or gas mixture are:

Liquid fugacity

fLα (T, p, x̄) = fLα (T, p)xαγα(T, p, x̄)

=

[
fVα (T, p∗(T )) exp

∫ p

p∗

ṽα,l
RT

dp

]
xαγα

= p∗(T )

[
exp

∫ p∗

0

(z − 1)

p
dp

][
exp

∫ p

p∗

ṽα,l
RT

dp

]
xαγα

= p∗α(T )φVα (T, p∗α)Fαxαγα

(1.25)

where,

fVα is the pure vapor fugacity of component α;
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φVα = exp
∫ p∗

0
(z−1)
p dp is the pure vapor fugacity coefficient of component α;

Fα = exp
∫ p
p∗

ṽα,l
RT dp is the Poyting factor and ṽα,l the pure liquid molar volume

of species α.

Gas fugacity

fVα (T, p, ȳ) = pyαφα(T, p, x̄) (1.26)

where,

yα is the vapor molar composition of species α;

φα is the mixture vapor fugacity coefficient of component α.

Pressure pr

Retentate
side Membrane Permeate

side

δ 

Pressure pp

Xα,r XI
α,r Xα,pXI

α,p

Figure 1.6: Identification of the interface membrane and bulk sides compositions
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1.5 Reverse Osmosis

Reverse osmosis and normal osmosis (dialysis) are directly related processes.
In simple terms, if a permselective membrane (i e. a membrane freely permeable
to water, but much less permeable to salt) is used to separate a salt solution from
pure water, water will pass through the membrane from the pure-water side of the
membrane into the side less concentrated in water (salt side). This process is called
normal osmosis. If a hydrostatic pressure is applied to the salt side of the membrane,
the flow of water can be retarded and, when the applied pressure is sufficient, the
flow ceases.
The hydrostatic pressure required to stop the water flow is called the osmotic pressure
(∆π). If pressure greater than the osmotic pressure are applied to the salt side of the
membrane, then the flow of water is reversed, and water begins to glow from the
salt solution to the pure water side of the membrane. This process is called reverse
osmosis and is an important method of producing pure water from salt solutions.
In reverse osmosis, following the general procedure, the chemical potentials at both
sides of the membrane are first equated. At the retentate interface, the pressure in the
retentate solution and within the membrane are identical (see fig. 1.9c).

Pressure pr

Solvent activity 
ɣixi 

Solution Membrane Solvent

Chemical 
potential µ i

psat

Reverse osmosis

Figure 1.7: Pressure and concentration profiles in a reverse osmosis process.
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Chemical Potentials At The Membrane Retentate Side Interface

Equating the fugacities at the retentate side interface of the membrane gives

fα,r = f Iα,r (1.27)

and recalling (eq. 1.25)

����������
[
fVα exp

∫ pr

p∗

ṽα,l
RT

dp

]
xα,rγα(T, pr, xα,r) =

=
����������
[
fVα exp

∫ pr

p∗

ṽα,l
RT

dp

]
xIα,rγα(T, pr, x

I
α,r)

(1.28)

which leads to

xα,rγα,r = xIα,rγ
I
α,r (1.29)

Chemical Potentials At The Membrane Permeate Side Interface

At the permeate side interface, a pressure difference exists (as shown in fig. 1.9 (c))
from pr within the membrane to pp in the permeate solution. Equating the fugacities
across this interface gives

fα,p = f Iα,p (1.30)

Substituting the appropriate expression for the fugacity of a liquid in a mixture
(eq. 1.25) yields[

��f
V
α exp

∫ pp

p∗

ṽα,l
RT

dp

]
xα,pγα,p(T, pp, xα,p) =

=

[
��f
V
α exp

∫ pr

p∗

ṽα,l
RT

dp

]
xIα,pγα,p(T, pr, x

I
α,p)

(1.31)

which leads to

xα,pγα,p = xIα,pγ
I
α exp

∫ pr

pp

ṽα,l
RT

dp (1.32)

Rearranging eq. 1.29 and 1.32

xIα,r = xα,r
γα,r
γIα,r

xIα,p = xα,p
γα,p
γIα,p

{
exp

[
− ṽα,l
RT

(pr − pp)

]} (1.33)
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Substituting these two terms into the continuity equation (flux)

Jα = cDα,β

xIα,R − xIα,P
δ

=

=
cDα,β

δ

{
xα,r

γα,r
γIα,r

− xα,p
γα,p
γIα,p

exp

[
− ṽα,l
RT

(pr − pp)

]} (1.34)

which can be simplified assuming that the ratio between the activity coefficient is the
same at the retentate or at the permeate side:

Jα ≈
cDα,β

δ

γα,r
γIα,r

{
xα,r − xα,p exp

[
− ṽα,l
RT

(pr − pp)

]}
(1.35)

The latter equation can be further rearranged

Jα =
KL
αDα,β

δ

{
xα,r − xα,p exp

[
− ṽα,l
RT

(pr − pp)

]}
=

=
Qα
δ

{
xα,r − xα,p exp

[
− ṽα,l
RT

(pr − pp)

]}
(1.36)

where

the product cγα,rγα,r

I
= KL

α is defined as the sorption coefficient of species α in
the membrane matrix;

the product Dα,β
γα,r
γIα,r

= Qα is often referred to the permeability of species α
in the membrane. It represents the extent if which a species dissolves and dif-
fuses through a membrane. Permeability is also the parameter which is usually
experimentally measured.

Often, the flux equation for liquid is reported in term of concentrations of species α
in a liquid mixture

Jα =
Q∗α
δ

{
cα,r − cα,p exp

[
− ṽα,l
RT

(pr − pp)

]}
(1.37)

where,

Q∗α in now accounting for the change from molar fraction to concentration.
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(l)/δ

Figure 1.8: Flux of component i as a function of ∆p = pr − pp.

Some insights can be gained by plotting the flux equation as a function of the
∆p = (pr − pp) in fig. 1.8. Very large pressure differences across the membrane
produce relatively small concentration gradients and therefore an flux increase.
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Figure 1.9: Chemical potential, pressure, and solvent activity profiles in an osmotic
membrane according to the solution-diffusion model.
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1.5.1 An Application: Water Desalination

Reverse osmosis is mostly used for desalting water. Membranes that are permeable
to water, but essentially impermeable to salt are exploited. The objective of water de-
salination is the production of fresh water at the permeate side. Figure 1.10 displays
the schematic of a membrane module for water desalination. A pressure difference
is applied across the membrane, which sees a liquid mixture at both sides. Pressur-
ized water containing dissolved salts contacts the feed side of the membrane, while
water depleted of salt is withdrawn as low-pressure permeate. This section aims at
expressing the flux equations in terms of the pressure gradient through the membrane
and linearize them.

Figure 1.10: Schematic of a membrane module for reverse osmosis

The equation of the flux for reverse osmosis, assuming the ratio of activity coeffi-
cients equal at retentate and permeate side, is here reported for convenience:

Jα =
cDα,β

δ

γα,r
γIα,r

{
xα,r − xα,p exp

[
− ṽα,l
RT

(pr − pp)

]}
(1.38)

Where the subscripts r and p indicate the retentate and permeate conditions, re-
spectively.This equation is often reported in terms of concentration, either mass or
molar based:

xα =
cα
ctot
→ xα,f =

cα,f
ctot,f

;xα,p =
cα,p
ctot,p

(1.39)

Therefore,

Jα =
cDα,β

δ

γα,r
γIα,r

{
cα,r
ctot,r

− cα,p
ctot,p

exp

[
− ṽα,l
RT

(pr − pp)

]}
(1.40)

If ctot,r ∼= ctot,p = ctot it is obtained:

Jα =
Dα,β

δ

γα,r
γIα,r

xIα︸ ︷︷ ︸
Kα

{
cα,r − cα,p exp

[
− ṽα,l
RT

(pr − pp)

]}

=
Pα

δ

{
cα,r − cα,p exp

[
− ṽα,l
RT

(pr − pp)

]}
(1.41)
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From an operation point of view, water desalination is driven by the pressure
difference at membrane sides. In the following, the required pressure difference for
different operation conditions is investigated.
The equilibrium condition defines the osmotic pressure, ∆π. It essentially represents
the minimum partial pressure difference necessary for the reverse osmosis to occur.
At equilibrium, the water flux is null, Jw = 0, locally, at any position along the
membrane. It follows that

Jw = 0 =
Qw
δ

{
xw,r(z)− xw,p(z) exp

[
− ṽw
R T

(pr − pp)︸ ︷︷ ︸
∆π

]}
(1.42)

Therefore,

∆π = −R T

ṽw
ln
xw,r(z)

xw,p(z)
=
R T

ṽw
ln
xw,p(z)

xw,r(z)
(1.43)

Assuming xw,p(z) = 1,∀z

∆π =
R T

ṽw
ln

1

xw,r(z)
(1.44)

Equation 1.44 states that the higher xw,r(z), the lower the osmotic pressure.
Three scenarios can be identified referring to equation 1.41:

pr − p < ∆π =⇒ exp[·] > 1. Normal osmosis takes place. The water flows
from the pure-water side to the sea-water side.

pr−p = ∆π =⇒ exp[·] = 1. Osmotic equilibrium is reached. No flux occurs,
since the osmotic pressure is counterbalance by the pressure difference.

pr − p > ∆π =⇒ exp[·] < 1. Reverse osmosis takes place. The water flows
from the sea-water side to the pure-water side.

Such a conclusion can be reached by mean of the balance equations around the
membrane module. In particular:

Overall material balance
ṅf = ṅp + ṅr (1.45)

Water material balance

ṅf xw,f = ṅp xw,p + ṅr xw,r (1.46)

Flux equation

Jw =
Qw
δ

{
xw,r(z)− xw,p(z) exp

[
− ṽw
R T

(pf − pp)

]}
(1.47)
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Composition equation ∑
i

xi = 1,∀i (1.48)

Where i represents the generic component in the feed flow.
In the following, two different cases are analysed based on different flow conditions
at membrane sides.

Case A. The following assumptions are made: (I) The water fraction in the reten-
tate is constant, equal to the feed water fraction; (II) The water fraction at permeate
side is constant, independent of membrane position; (III) The pressure is also con-
stant at both sides of the membrane. As a consequence,{

xw,r(z) = xw,f ∀z
xw,p(z) = xw,p ∀z

(1.49)

Recalling the definition of osmotic pressure, the flux equations can be re-written
as a function of the osmotic pressure and pressure difference:

xw,p = xw,f exp

(
ṽw
R T

∆π

)
(1.50)

Thus,

Jw =
Qw
δ

xw,f

{
1− exp

[
− ṽw
R T

(pf − pp −∆π)

]}
(1.51)

For the conditions holding in most of real water desalination applications, the
aforementioned flux equation can be linearized. In particular, noting the small spe-
cific volume for liquid mixtures, vw −→ 0, and recalling the Taylor-Maclaurin series
for the exponential function

e−x = 1− x+
x2

2!
− x3

3!
+ ... ∀x

lim
x→0

e−x = 1− x (1.52)

it is possible to write,

Jw =
Qw
δ

xw,f

{
ṽw
R T

[(pf − pp)−∆π]

}
Jw =

Qw
δ

xw,f
ṽw
R T

[(pf − pp)−∆π] (1.53)

Therefore,

pr − p < ∆π =⇒ Jw < 0. Normal osmosis takes place. The water flows
from the pure-water side to the sea-water side.
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pr − p = ∆π =⇒ Jw = 0. Osmotic equilibrium is reached. No flux occurs,
since the osmotic pressure is counterbalance by the pressure difference.

pr − p > ∆π =⇒ Jw > 0. Reverse osmosis takes place. The water flows
from the sea-water side to the pure-water side.

The linearization above is reliable for highly selective membranes, xw,p ≈ 1, and
small water recovery, xw,r(z) ≈ xw,f ∀z. In fact, different assumptions can lead
to a slight deviation from linearity. As an example, the perfect mixing condition is
investigated below.

Case B. Perfect mixing conditions are assumed. This implies: (I) Constant molar
fraction at retentate side, but different than in the feed stream; (II) Constant molar
fraction at permeate side; (III) Constant pressures at both membrane sides. As a
consequence, {

xw,r(z) = xw,r ∀z, 6= xw,f

xw,p(z) = xw,p ∀z
(1.54)

In this framework the equation system becomes

∆π = R T
ṽw

ln
xw,p(z)
xw,r(z) = R T

ṽw
ln
xw,p
xw,r

ṅr = ṅf − ṅp = ṅf (1− θ)

xw,r =
ṅf xw,f−ṅp xw,p

ṅr
=

xw,f−θ xw,p
1−θ ≈ xw,f − θ

1− θ︸ ︷︷ ︸
for xw,p≈1

Jw = Qw
δ xw,r

{
1− exp

[
− ṽw
R T (pf − pp −∆π)

]}
(1.55)

It is worth noticing how an increase in the stage cut, θ, brings to: (I) A decrease
in xw,r; (II) An increase in osmotic pressure ∆π; (III) An decrease in flux Jw for
constant pressure difference. The water flux can be determined by solving the system
above. Figure 1.11 reports the water flux as a function of the pressure difference for
the ideal case (i.e. xw,r = xw,f , equivalent to cw,r = cw,f ) and for the perfect
mixing case. A lower water flux and a slight deviation from linearity is registered in
the perfect mixing case.
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Figure 1.11: Ideal and perfect mixing relationship between the water flux and the
pressure difference in a reverse osmosis application.
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1.6 Gas Separation

Membranes modules can be also used to perform gases separations. A mathemati-
cal expression for the flux a gaseous component through the membrane is therefore
needed. The typical process conditions for a gas separation process are shown in
fig. 1.12 where a high pressure gas mixture at pr is fed to the feed side of the mem-
brane while the permeate is removed at a lower pressure pp at the downstream side.
The pressure profile within the membrane is assumed constant and equal to pr while
the chemical potential gradient is due to the component partial pressure difference
between feed and permeate concentrations.

Pressure pr

Gas separation

Retentate
side Membrane Permeate

side

 psat

Pressure pp

Concentration profile

Figure 1.12: Pressure and concentration profiles in a gas separation process.

Chemical Potentials At The Membrane Retentate Side Interface

Equating the fugacities at the retentate side (feed) interface of the membrane gives

fα,r = f Iα,r (1.56)

The assumption that once the gas is adsorbed in the membrane matrix it behaves
as a liquid rather than a gas allows to write the fugacity of a component within the
membrane as the fugacity of a species in a liquid mixture. Recalling (eq. 1.25)

yα,rprφα(T, pr, yα,r) =

=

[
fVα exp

∫ pr

p∗α

ṽα,l
RT

dp

]
xIα,rγα(T, pr, x

I
α,r)

(1.57)
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which leads to, considering the φVα = 1 and rearranging the latter equation

yα,rpr
φα(T, pr, yα,r)

p∗α(T )γα(T, pr, xIα,r)
= xIα,r exp

[
(pr − p∗α)

ṽα,l
RT

]
(1.58)

the molar fraction, yIα,r, therefore is

xIα,r = yα,rpr
φα(T, pr, yα,r)

p∗α(T )γα(T, pr, xIα,r)
exp

[
−(pr − p∗α)

ṽα,l
RT

]

= KG,r
α pα,r exp

[
−(pr − p∗α)

ṽα,l
RT

] (1.59)

Chemical Potentials At The Membrane Permeate Side Interface

At the permeate side interface, a pressure difference exists from pr within the mem-
brane to pp in the permeate gas stream. Equating the fugacities across this interface
gives

fα,p = f Iα,p (1.60)

Substituting the appropriate expression for the fugacity of a liquid in a mixture
(eq. 1.25) yields

yα,pppφα(T, pp, yα,p) =

=

[
fVα exp

∫ pr

p∗α

ṽα,l
RT

dp

]
xIα,pγα(T, pr, x

I
α,p)

(1.61)

which leads to the molar fraction of species α at the membrane interface

xIα,p = yα,ppp
φα(T, pp, yα,p)

p∗α(T )γα(T, pp, xIα,p)
exp

[
−(pr − p∗α)

ṽα,l
RT

]

= KG,p
α pα,p exp

[
−(pr − p∗α)

ṽα,l
RT

] (1.62)

Substituting equations 1.59 and 1.62 into the flux equation for binary mixtures

Jα =
cDα,β

δ

{
KG,r
α pα,r exp

[
−(pr − p∗α)

ṽα,l
RT

]
+

−KG,p
α pα,p exp

[
−(pr − p∗α)

ṽα,l
RT

]} (1.63)
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which can be simplified assuming the equality between the sorption coefficients re-
spectively on the retentate (feed) and permeate side:

Jα = c
Dα,βK

G
α

δ

(
pα,r − pα,p

)
exp

[
−(pr − p∗α)

ṽα,l
RT

]
=

= c
Dα,βK

G
α

δ

(
pα,r − pα,p

)
Fα

(1.64)

Considering the fact that the Poynting correction factor Fα is close to 1 for system at
relatively low pressure

Jα =
Dα,βK

∗
G,α

δ

(
pα,r − pα,p

)
=
Qα
δ

(
pα,r − pα,p

)
(1.65)

The flux of gas species α across a membrane is indipendent from the total pressure
while depends on the difference in partial pressures across the membrane.
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1.7 Pervaporation

Pervaporation can be considered as an intermediate separation process between gas
separation and reverse osmosis processes. The peculiarity of the pervaporation pro-
cess is that the permeate pressure is fixed to a value below the saturation pressure of
the permeating mixture therefore the stream condition is a vapor. The physical state
of the feed stream is a liquid due to the fact that the operating pressure is above the
vapor pressure of the mixture at the operative temperature. The system is represented
in fig. 1.13.

Pressure pr

Pervaporation

Retentate
side Membrane Permeate

side

 psat

Pressure pp

Concentration profile

Figure 1.13: Pressure and concentration profiles in a pervaporation process.

Feed conditions
Retentate membrane interface in contact with a feed fluid which is liquid at p > psat.

Permeate conditions
Permeate membrane interface in contact with a permeate fluid which is vapor at
p < psat.
During a pervaporation process the liquid stream that is permeating through the
membrane undergoes vaporization. In a general approach an energy balance should
be coupled with material balances in order to account for either mass and heat trans-
fer effects. For sake of simplicity the isofugacity conditions, imposed at the mem-
brane interfaces, are applied to an isothermal pervaporation membrane where the
change in temperature effect is not occurring.
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Chemical Potentials At The Membrane Retentate Side Interface

Equating the fugacities at the retentate side interface of the membrane gives

fα,r = f Iα,r (1.66)

and recalling (eq. 1.25)

����������
[
fVα exp

∫ pr

p∗

ṽα,l
RT

dp

]
xα,rγα(T, pr, xα,r) =

=
����������
[
fVα exp

∫ pr

p∗

ṽα,l
RT

dp

]
xIα,rγα(T, pr, x

I
α,r)

(1.67)

which leads to

xα,rγα,r = xIα,rγ
I
α,r (1.68)

Rearranging the latter equation:

xIα,r = xα,r
γα,r
γIα,r

(1.69)

Chemical Potentials At The Membrane Permeate Side Interface

At the permeate side interface, a pressure difference exists from pr within the mem-
brane to pp in the permeate gas stream. Equating the fugacities across this interface
gives

fα,p = f Iα,p (1.70)

The expressions for the fugacity of a liquid (eq. 1.25) at the membrane interface and
for the fugacity of a vapor (eq. 1.26) at the permeate interface (bulk side) leads to

yα,pppφα(T, pp, yα,p) =

=

[
fVα exp

∫ pr

p∗α

ṽα,l
RT

dp

]
xIα,pγα(T, pr, x

I
α,p)

(1.71)

considering the φVα = 1 and rearranging the latter equation for expressing the molar
fraction of species α at the membrane interface

xIα,p = yα,ppp
φα(T, pr, yα,p)

p∗α(T )γα(T, pp, xIα,p)
exp

[
−(pr − p∗α)

ṽα,l
RT

]
(1.72)
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Substituting equations 1.69 and 1.72 into the flux equation for binary mixtures

Jα =
cDα,β

δ

{
xα,r

γα,r
γIα,r︸︷︷︸
K∗L,α

+

− yα,ppp
φα(T, pr, yα,p)

p∗α(T )γα(T, pp, xIα,p)︸ ︷︷ ︸
K∗V,α

exp

[
−(pr − p∗α)

ṽα,l
RT

]
︸ ︷︷ ︸

≈1

} (1.73)

Considering the fact that the Poynting correction factor Fα is close to 1 for system at
relatively low pressure and introducing the sorption coefficients in the latter equation:

Jα =
Dα,β

δ

[
xα,rK

∗
L,α − yα,pppK∗V,α

]
(1.74)

Equation 1.74 can be written as

Jα =
Dα,βK

∗
V,α

δ

[
xα,rHL,α − yα,ppp

]
=
QVα,β
δ

[
xα,rHL,α − yα,ppp

]
(1.75)

where,

HL,α =
K∗L,α
K∗V,α

represents the Henry constant solubility for component α ;

QVα,β represents the vapor permeability of component α in the pervaporation
membrane.
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1.8 Unified View Of The Solution Diffusion Model

The solution-diffusion model is used to calculate the concentration gradients estab-
lished among a membrane layer in reverse osmosis, gas separation and pervaporation
processes.

Reverse osmosis

Jα =
Qα
δ

{
xα,r − xα,p exp

[
− ṽα,l
RT

(pr − pp)

]}

Jα =
Q∗α
δ

{
cα,r − cα,p exp

[
− ṽα,l
RT

(pr − pp)

]}

Gas permeation

Jα =
Qα
δ

(
pα,r − pα,p

)
exp

[
−(pr − p∗α)

ṽα,l
RT

]

Pervaporation

Jα =
cDα,β

δ

{
xα,rK

∗
L,α − yα,pppK∗V,α exp

[
−(pr − p∗α)

ṽα,l
RT

]}
Fig. 1.14 summarizes the typical reverse osmosis, gas separation and pervapo-

ration processes pressure profiles. By considering the permeate mixture saturation
pressure psat as a reference pressure it can be stated that for the case of reverse osmo-
sis both retentate and permeate streams are subcooled liquids. When the permeate
operating pressure is set below the permeate mixture vapor pressure the retentate will
be a liquid while the permeate will be a vapor (pervaporation case). In the case of
gas separations both retentate and permeate streams are below the mixtures satura-
tion pressures, this is indeed the case of two stable gas mixtures respectively in the
feed and permeate sides.

All the processes can be represented in a single diagram as shown in fig. 1.15
where the performance of each process, at any retentate and permeate pressures con-
dition, can be indicated as a point within the figure.
The flux of component α can be normalized using Jα,max and expressed as a func-
tion of the ratio between the operative retentate operative pressure versus the reten-
tate saturation pressure. A value of the ratio below one defines the retentate mixture
as a vapor while the value of one signifies the transition between vapor to liquid state
for the retentate. By varying the permeate pressure from values below its vapor pres-
sure to values for which the permeate aggregation state is liquid (pp>pp,sat) different
membrane separation processes can be identified. The liming flux corresponds to
the permeation rate of a retentate liquid which is not a function of the applied ∆p
anymore.
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Figure 1.14: Pressure profiles for different membrane separation processes: gas sep-
aration, pervaporation and reverse osmosis.
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Figure 1.15: Normalized flux profiles for different membrane separation processes:
gas separation, pervaporation and reverse osmosis.
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In membrane separation processes, a gas or a liquid mixture contacts the feed side
of the membrane, and a permeate enriched in one of the components of the mixture
is withdrawn from the downstream side of the membrane. Because feed mixture
components permeate at different rates, concentration gradients can form in the fluids
on both sides of the membrane. In this case, the concentration at the membrane
surfaces are not the same as the bulk fluid concentrations. This phenomenon is called
concentration polarization and it affects the overall mass flux through the membrane
as shown in fig. 2.1. Eq. 1.36 provides a theoretical explanation of the flux behaves
under a superimposed pressure gradient but as shown in fig. 2.1 the real flux values
are less that the theoretical ones, in and show a non-linear behavior with increasing
the applied gradient pressure.

Figure 2.1: Membrane flux over applied gradient pressure.

Membrane modules achievable performances not only depend on membranes
characteristics but also on the solution fluid-dynamics which strongly affects the
mass transport rate from the bulk liquid phase to the membrane.
In a membrane module the different components are transported towards the mem-
brane because of the overall convective motion of the mixture. Due to the membrane
rejection (not every component is able to permeate through the membrane) toward
a specific permeant a polarization concentration of this component is likely to occur
in the mass transfer layer close to the membrane. This implies that, at the retentate
membrane interface, the concentration of the component which is rejected assumes
higher values with respect to the bulk concentration. The physical consequence of
this is that a diffusive flux of the not permeable component is established in the oppo-
site direction of the convective flux (from the membrane interface to the bulk liquid
phase). The importance of concentration polarization depends on the membrane
separation process. Concentration polarization can significantly affect membrane
performance in reverse osmosis, but it is usually well controlled in industrial sys-
tems. On the other hand, membrane performance in ultrafiltration, electrodialysis,
and some pervaporation processes is seriously affected by concentration polarization.
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Figure 2.2: Concentration polarization: less permeable component concentration
gradient adjacent to the membrane. The mass balance equation for component flux
across the boundary layer is the basis of the film model description of concentration
polarization.

2.1 Concentration Polarization In Liquid Separation Processes

The polarization concentration phenomenon can be by model by assuming that a thin
layer of fluid (laminar regime) of thickness δ exists between the membrane surface
and the well-mixed bulk solution. The concentration gradients that control concen-
tration polarization form in this layer. This boundary layer film model oversimplifies
the fluid hydrodynamics occurring in membrane modules and still contains one ad-
justable parameter, the boundary layer thickness. Nonetheless, this simple model
can explain most of the experimental data. Based on the film model theory the mass
transfer resistance is lumped in a material film of thickness δ located close to the
membrane interface. In this film the mass transport mechanism is assumed to obey
Fick’s law while in the bulk phase the concentration in assume to be uniform. The
film thickness is strongly affected by the fluid-dynamic regimes established in the
system: under laminar flow it can be identified as a boundary layer while under tur-
bulent regimes as a laminar film close to the wall.
Based on the aforementioned model the transport coefficient can be defined as:

k =
D

δ
(2.1)

where,

D represents the diffusion coefficient of the component in the mixture;

δ represents the mass transfer film thickness.
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By performing a mass balance over the control volume shown in fig. 2.2 one has:

J̄Diff + J̄Conv = J̄P (2.2)

which implies that the mixture is moving with a velocity v toward the membrane
surface. In a scalar form equation the mass flux vci of each components dictates:

−Di
dci
dy

= v(cp,i − ci) (2.3)

By integration of eq. 2.3 over the film of thickness δ and recalling eq. 2.1 a relation
between ci, cIi and ci,p is obtained:

ln

[
cIi − cp,i
ci − cp,i

]
=
v

k
(2.4)

In this case the diffusion coefficient Di has been assumed constant over the film
thickness which is not always a good approximation of the real system (see ul-
trafiltration). Several correlation for the estimation of the transport coefficient are
available in literature regarding different membrane module geometries and fluid-
dynamic conditions. These correlations, which are the analogous of the the heat
transfer coefficient correlations, do not take into account the velocity profile distor-
tion due to later flux nor the variation of physical properties within the film thickness.
Even though these approximations are acceptable for reverse osmosis, it must be no-
ticed that for ultrafiltration viscosity and diffusion coefficients can reach membrane
interface values very different compared to those ones in the bulk phase. In this case
eq. 2.4 must be revised using a relation useful to interpret experimental results.

2.1.1 Osmotic Effect

Due to concentration polarization effects the flux over a membrane does not vary
linearly with the applied pressure. In the case of the osmotic pressure:

Js = φ(∆p−∆π) = φ[∆p− (πI − πp)] (2.5)

The osmotic pressure of the retentate side is a function of the operative pressure of
the retentate side. If an increased ∆p is applied a consequent increment in flux will
occur. At the same time an increase in cIi will be notice due to the membrane rejec-
tion: the value of πI at the membrane interface will raise consequently.
The overall effect of the operation is represented by an increased flux which is lower
than in the ideal condition of absence of concentration polarization.

In the process of ultrafiltration the polarization effect is much more enhanced: in-
creasing the retentate pressure value enhance the flux that rapidly reaches an asymp-
totic value which is a function of concentration and fluid-dynamics only. This be-
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haviour cannot be just be explained by just making use of the osmotic effect: the
most popular model is the gel model1.

2.2 Concentration Polarization In Gas Separation Processes

Concentration polarization in gas separation processes has not been widely studied,
but usually the effect can be assumed to be small because of the high diffusion coef-
ficients of gases. In calculating the expression for the concentration polarization of
gases, the simplifying assumption that the volume fluxes on each side of the mem-
brane are equal cannot be made. The starting point for the calculation is the mass
balance equation (eq. 2.3), which for gas permeation is written

Jrcr,i −Di
dci
dx

= Jpcp,i (2.6)

where Jr is the volume flux of gas on the feed side of the membrane and Jp is the
volume flux on the permeate side. These volume fluxes (cm3/cm2s) can be linked by
correcting for the pressure on each side of the membrane using the expression

Jrcr,ipr = Jpcp,ipp (2.7)

where pr and pp are the gas pressures on the retentate and permate sides of the
membrane.
Hence,

Jr
pr
pp

= Jrφ = Jp (2.8)

where φ is the pressure ratio pr
pp

across the membrane. Substituting eq. 2.8 into
eq. 2.6 and rearranging gives

Di
cr,i
dx

= Jr(φcp,i − cr,i) (2.9)

Integrating across the boundary layer thickness, as before, gives

ln

[ cIi
φ − cp,i
ci
φ − cp,i

]
=
Jrδ

Di
(2.10)
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CHAPTER 3

DESIGN OF GAS SEPARATION
MODULES

3.1 Introduction

The separation and economic performance of a membrane-based gas separation pro-
cess depend on several parameters. A correlation between input conditions, operat-
ing variables and output conditions must be clarified for the analysis to be carried
out. Generally, the input conditions are given by the feed stream, while the outcome
has to be intended in terms of separation and economic indicators. In the framework
of gas separation, the main performance indicators are recovery (R), purity (P), and
separation factor (α∗) of a given component i, given by

R =
ṅi,p(L) yi,p(L)

ṅi,F yi,F
(3.1)

P = yi,p(L) (3.2)

α∗ =
yi,p(L) [1− yi,r(L)]

yi,r(L) [1− yi,p(L)]
(3.3)

Membrane separations
Rate controlled separation processes. Copyright c© 2016 SPL
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Figure 3.1: Schematic of membrane gas separation process design and evaluation.

Where ṅ indicates the molar flow rate, y the molar fraction and L is the length of
the module. The subscripts r and p refers to the component i in the retentate side or
permeate side respectively. The subscript f indicates the feed stream.
On the other side the cost of a membrane process relates to the compression energy
and to the membrane area. The former translates in operating cost (OPEX), while the
latter in investment cost (CAPEX). Figure 3.1 displays a schematic of a membrane-
based gas separation process design and evaluation. In a first place, a gas separation
membrane module can be thought as a black box with 1 inlet stream: the feed, and 2
outlet streams: the retentate and the permeate.

Figure 3.2: Schematic of membrane gas separation process design and evaluation.

Therefore, a general membrane-based gas separation can be described by the fol-
lowing equations:

Overall material balance equations.

ṅp + ṅr = ṅf (3.4)
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Species i balance equations.

ṅp yi,p + ṅr yi,r = ṅf yi,f (3.5)
i = 1, ..., Nc − 1

Where Nc represents the number of components of the gas mixture entering the
membrane module. The material balances can be also expressed in terms of flux
across the membrane. In particular,

ṅp =

Nc∑
i

∫ A

0

Jids (3.6)

Where Ji indicates the flux of the component i and can be expressed through
the solution-diffusion model, below. The membrane area A can be expressed
according to the module geometry, i.e. as a cylinder in the case of a hollow-fiber
module, or a plate in the case for a spiral-wound module.

Flux equations. The solution-diffusion model states,

Ji =
Qi
δ

(pf yi,r − p yi,p) (3.7)

Composition equations. It should be recalled that the sum of the molar fractions
must always equal the unity.

Nc∑
i

yi,f = 1 (3.8)

Nc∑
i

yi,r = 1 (3.9)

Nc∑
i

yi,p = 1 (3.10)

In their pioneering work, Weller and Steiner [1] proposed two models for model-
ing the separation of gas binary mixture through membranes: perfect mixing on both
sides, and no mixing on both sides. Afterward, Hwang and Kammermeyer [2] in-
vestigated the separation behavior of a single-stage membrane module. After them,
this general design problem has been widely extended by other authors with more
complex models accounting for multi-component mixtures as well as different hy-
drodynamic conditions and module geometries. In the following, a generic binary
mixture α + β, where α is the most permeable component through the membrane, is
considered. Three basic design approaches are outlined: perfect mixing, cross-plug
flow and counter-current flow.
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Figure 3.3: Schematic of a membrane gas separation module characterized by perfect
mixing at both retentate and permeate side.

3.2 Gas Separation Module with Perfect Mixing

Figure 3.3 displays the schematic of a membrane gas separation module character-
ized by perfect mixing at both retentate and permeate side. p indicates the fluid
pressure. The main assumption of this model is that the rate of mixing on both sides
is much than the flow rate. This translates in constant composition at either sides of
the membrane. The following assumption are made:

1. Mixing rate (MR) much higher than fluid velocity (u), at both sides of the
membrane. This translate in constant composition profiles (blue lines in figure
3.3) equal to yα,r and yα,p at retentate and permeate side, respectively.

2. Isothermal process

3. Constant pressure at both sides of the membrane

4. Constant membrane properties, i.e. selectivity and permeability independent
from temperature, pressure and gas composition.

5. Negligible non-idealities, such as fiber deformation, membrane swelling, mem-
brane plasticization.

Assumption 1 can be interpreted as non-moving fluid inside the membrane. The
equations below can be written when dealing with a membrane gas separation mod-
ule. The permeate and retentate quantities refer to the section L. For sake of sim-
plicity this is implied in the section.

Material balance equations.

ṅp yα,p + ṅr yα,r = ṅf yα,f (3.11)

ṅp yβ,p + ṅr yβ,r = ṅf yβ,f (3.12)
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The material balances can be also expressed in terms of flux across the mem-
brane.

Jα A = ṅp yα,p (3.13)

Jβ A = ṅp yβ,p (3.14)

It must be noted that the material balances can be expressed either for the two
components or for one component and the overall mixture.

Flux equations. The flux across the membrane, J , is expressed by mean of the
solution-diffusion model. The driving force across the membrane, provided by
the partial pressure gradient at the sides of the membrane, is constant due to the
flat composition profiles.

Jα =
Qα
δ

(pf yα,r − p yα,p) (3.15)

Jβ =
Qβ
δ (pf yβ,r − p yβ,p) =

Qβ
δ [pf (1− yα,r)− p (1− yα,p)]

(3.16)
Where Q indicates the permeability of a given component and δ the thickness
of the membrane. The membrane area A can be expressed according to the
module geometry, i.e. as a cylinder in the case of a hollow-fiber module, or a
plate in the case for a spiral-wound module.

Composition equations. The sum of the molar fractions must equal the unity.

yα,r + yβ,r = 1 (3.17)

yα,p + yβ,p = 1 (3.18)

The aforementioned equations systems is solved to determine the performance of
the membrane module. The system includes 8 linearly independent equations: 3.11
- 3.18, and 10 unknowns: ṅr, ṅp, yα,r, yα,p, yβ,r, yβ,p, Jα, Jβ , p, A. The feed con-
ditions, ṅf , yα,f , pf , are assumed to be known. Therefore, the system still presents
two degrees of freedom. This implies that two variables must be fixed to complete
the module design.
In common practice, some dimensionless parameter are introduced in the analysis. In
particular, the stage cut, θ, defines the ratio of permeate to feed flow rate; the pressure
ratio, β, indicates the ratio of permeate to feed pressure; the membrane selectivity, α,
is the ratio of most permeant to least permeant component permeabilities, i.e. α > 1.

α =
Qα
Qβ

(3.19)

β =
p

pf
(3.20)

θ =
ṅp
ṅf

(3.21)
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Figure 3.4: Simplified schematic of membrane performance evaluation for the design
of a perfect mixing module.

By re-arranging equations 3.13 - 3.16, the membrane area can be expressed as a
function of stage cut, molar fractions, membrane technology and operating variables.

A =
yα,p ṅp
Jα

=
yα,p θ ṅf

Qα
δ (pf yα,r − p yα,p)

(3.22)

By expressing the recovery as a function of the stage cut

R =
ṅα,p yα,p
ṅα,f yα,f

= θ
yα,p
yα,f

(3.23)

equation 3.22 can be written as

A =
yα,p ṅp
Jα

=
R ṅf yα,f

Qα
δ (pf yα,r − p yα,p)

(3.24)

The objective of the membrane design is to define a procedure so that given the oper-
ating conditions, the membrane technology, and the feed conditions, the membrane
performance is determined. In this simple case:

(P,R,A) = f (β, yα,r, α, δ, yα,f ) (3.25)

Figure 3.4 illustrates a schematic of such a procedure. As mentioned above, two
variables must be fixed in this context. In fact, these change with the investigated ap-
plication. For instance, in the context of CO2 / N2 separation, the permeate require-
ments are usually specified; on the other hand, when dealing with biogas upgrading,
CO2 / CH4 separation, the retentate side is provided as a process specification. In
both cases the economic performance can be calculated.

By dividing equation 3.15 by 3.16, and using equations 3.15 - 3.16, 3.17 - 3.18 it
is possible to write

Jα
Jβ

=
Qα (pf yα,r − p yα,p)

Qβ [pf (1− yα,r)− p (1− yα,p)]
=
ṅp yα,p
ṅp yB,p

=
yα,p

1− yα,p
(3.26)

Introducing α and β,

yα,p
1− yα,p

= α
yα,r − β yα,p

(1− yα,r)− β (1− yα,p)
(3.27)
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Equation 3.27 can be re-arranged as a quadratic expression of yα,p, which corre-
sponds to the purity of the product.

β (α− 1) y2
α,p − [1 + (α− 1) (β + yα,r)] yα,p − α yα,r = 0 (3.28)

The physical solution of the second-degree equation can be expressed in the gen-
eral form

yα,p =
−b−

√
b2 − 4 a c

2 a
(3.29)

Where,

a = β (α− 1) (3.30)
b = − [1 + (α− 1) (β + yα,r)] (3.31)
c = α yα,r (3.32)

yα,p can be calculated by assigning the pressure ratio, β, the retentate molar frac-
tion, yα,r and the membrane technology, α. Once the molar fractions are known,
the molar flow rates, and thus the recovery, can be determined through the material
balance equations, i.e. equations 3.11 - 3.12. Finally, the membrane area is deter-
mined through the flux equation. It must be noted that, similarly, the membrane area
could be fixed and the recovery / purity calculated. This implies a choice between
economic and separation performance.
As mentioned above, in different situations the retentate conditions represent the cal-
culation outcome, with fixed permeate conditions. In this case, the equations above
can be re-arranged to obtain a first-order expression of yα,r.

yα,r =
yα,p [α (yα,p − 1)− β + 1− yα,p]

yα,p β(α− 1)− α β
(3.33)

Finally, it must be stressed that the same procedure could be followed for a mul-
ticomponent separation system. In this case, the system would be composed by 3
Ncomp + 3 equations, and by a corresponding number of unknowns, being Ncomp
the number of components.
In fact, more realistic flow patterns are used to investigate the performance of a
membrane-based separation process. Depending on the complexity, they may re-
quire a numerical solution. In the following, two examples of more realistic module
configurations are given.

3.3 Gas Separation Module with Cross-plug flow

Membrane separation models have been developed for a wide range of hydrody-
namic conditions. The previous section depicted an ideal case, where perfect mix-
ing occurs at both side of the membrane, i.e. the simplest case that can be consid-
ered. The present section deals with the cross-plug flow model. A one-dimensional



48 DESIGN OF GAS SEPARATION MODULES

concentration profile is considered at the retentate side; contemporary, the fluid is
assumed to be collected immediately from the permeate side. As a consequence,
although the permeate molar fraction depends on the flow at the retentate side, it is
independent of the the flow at the permeate side. The symbol y′α,p is used to indicate
the value of the permeate molar fraction along the membrane module, depending on
the retentate conditions. On the other hand, yα,p indicates the value at the membrane
output, calculated from a global material balance on the membrane module. The
cross-plug flow model remains a cornerstone in the membrane field, mainly because
it realistically predicts the separation performance of a hollow-fiber module under
a significant pressure ratio [3]. Figure 3.5 illustrates a schematic of a membrane
gas separation module characterized by a cross-plug flow. Assumptions 2 to 5 are
maintained and a binary mixture α+ β is taken into account. In this framework, the
proposed methodology holds for any type of flow pattern. Referring to figures 3.6 -
3.5 the following equations can be written.

Material balance equations. First, the overall material balance on the mem-
brane module is written. These equations define the conditions at the end of the
membrane module (z = L).

ṅp + ṅr(L) = ṅf (3.34)

ṅp yα,p + ṅr(L) yα,r(L) = ṅf yα,f (3.35)

The material balances can be written for the differential element dz (at retentate
side) indicated by the red dashed line in the figure.

dṅr = −J ds (3.36)

d(ṅr y
′
α,r) = −J y′α,p ds (3.37)

Figure 3.5: Schematic of membrane gas separation module characterized by a cross-
plug flow.
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Figure 3.6: Differential element dz within the cross-plug membrane module.

Where the minus sign indicates that a positive flux corresponds to a reduction
in the retentate flow rate, due to the material permeation across the membrane.
The membrane area coordinate s is proportional to z with a relationship that
depends on the membrane geometry. In particular, for a cylindrical or plane
geometry, the membrane area can be expressed as follows,

– Plate geometry: ds = W dz

– Cylinder geometry: ds = π Do dz

Where W indicates the width of the membrane plate and Do the outer radius of
the cylinder membrane.

Flux equations. The flux is expressed through the solution-diffusion model.

J y′α,p(z) =
Qα
δ

[
pf yα,r(z)− p y′α,p(z)

]
(3.38)

J
[
1− y′α,p(z)

]
=
Qβ
δ

[
pf [1− yα,r(z)]− p

[
1− y′α,p(z)

]]
(3.39)

Where the composition equations 3.17 - 3.18 are included. Here, the stoichio-
metric equations yα,r + yβ,r = yα,p + yβ,p = y′α,p + y′β,p = 1 are implied for
any z along the membrane.

The aforementioned equation system is solved to determine the performance of
the membrane module. The system includes six equations: 3.34 - 3.39, and eight
variables: ṅr, ṅp, yα,r, yα,p, y′α,p, J , p, A. The feed conditions are assumed to be
given: ṅf , yα,f , pf , also providing for the boundary conditions for the differential
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equations. It is worth noting, one more time, that the system presents two degrees of
freedom.

Although correctly formulated, the set of equations 3.34-3.39 can be manipulated
in order to obtain a dimensionless and more responsive system of equations. One of
the possible manipulations is described by the procedure in the following.
By dividing equation 3.38 by equation 3.39, the algebraic expression stated by 3.27
can be obtained. However, it now has to be intended as a local expression, holding
for any generic section z. Hereafter, the local nature of the molar fractions and mole
flow rates will be implied for notation simplicity. Re-arranging,

y′α,p =
1+(α−1) (β+yα,r)−

√
[1+(α−1) (β+yα,r)]2−4 α β (α−1) yα,r

2 β (α−1) (3.40)

It is worth noticing that y′α,p can be expressed uniquely as a function of α, β, yα,r.
Moreover, by combining equations 3.36 and 3.38, it is possible to write:

d(ṅr) = −Jds = −
yα,r − β y′α,p

y′α,p

(
Qα pf ds

δ

)
(3.41)

Next, the following dimensionless quantities are introduced:

σ =
Qα pf s

δ ṅf
(3.42)

ψ =
ṅr
ṅf

(3.43)

θ =
ṅp
ṅf

(3.44)

Φ = J
s

ṅf
(3.45)

Defining the dimensionless membrane area coordinate (σ), the dimensionless re-
tentate mole flow rate (ψ), the dimensionless permeate flow rate (θ), and the dimen-
sionless flux (Φ), respectively.
Equation 3.41 can be written in dimensionless form:

dψ = −
yα,r − β y′α,p

y′α,p
dσ (3.46)

Depicting an ordinary differential equation relating the dimensionless mole flow
rate with the dimensionless area.
Equation 3.36 can be used in equation 3.37 to derive the following expression,

d(ṅr yα,r) = y′α,p dṅr (3.47)

The definition of product differentiation can be applied to determine a correlation
between the retentate molar fraction (yα,r) and the retentate mole flow rate (ṅr). In
specific,
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d(ṅr yα,r) = ṅr dyα,r + yα,r dṅr = y′α,p dṅr

dyα,r = −
(
yα,r − y′α,p

) dṅr
ṅr

dyα,r
dṅr

= −
yα,r − y′α,p

ṅr
(3.48)

Although not of primary relevance for the purposes of the class, it is worth notic-
ing that equation 3.48 can be integrated by parts. Indeed,

dyα,r
yα,r − y′α,p

= −dln ṅr∫ yα,r

yα,f

dyα,r
yα,r − y′α,p

= ln

(
ṅf
ṅr

)
(3.49)

By using the definition of ψ in equation 3.48,

dyα,r = −
(
yα,r − y′α,p

) dψ
ψ

(3.50)

Eventually, by combining equations 3.46-3.50 an ordinary differential equation
relating yα,r with σ can be derived,

dyα,r
dσ

=

(
yα,r − y′α,p

) (
yα,r − β y′α,p

)
y′α,p ψ

(3.51)

As a consequence, the final set of equations can be written as follows,

dyα,r
dσ

=

(
yα,r − y′α,p

) (
yα,r − β y′α,p

)
y′α,p ψ

(3.52)

dψ

dσ
= −

yα,r − β y′α,p
y′α,p

(3.53)

y′α,p =
1+(α−1) (β+yα,r)−

√
[1+(α−1) (β+yα,r)]2−4 α β (α−1) yα,r

2 β (α−1) (3.54)

θ = 1− ψ(L) (3.55)

yα,p =
yα,f − ψ(L) yα,r(L)

1− ψ(L)
(3.56)

Φ = −
yα,r − β y′α,p

y′α,p

(
Qα pf s

δ Uf

)
(3.57)
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Where equations 3.55 and 3.56 are obtained from 3.34 and 3.35. The boundary
conditions, in σ = 0, for the two differential equations 3.52-3.53 are the following:

yα,r(σ = 0) = yα,f (3.58)

ψ(σ = 0) = 1 (3.59)

For given membrane technology (α, Q, δ) and feed conditions (ṅf , yα,f , pf ),
there are eight variables (yα,r, yα,p, y′α,r, β, σ, Φ, ψ, θ) to satisfy six equations. This
implies the any of these two variables may be specified.
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3.4 Gas Separation Module with Counter-current Flow

A counter-current membrane module, displayed in figure 3.7 is investigated. The
figure highlights the qualitative composition profile along the module (blue lines).
Hence, it illustrates how the counter-current configuration is beneficial in terms of
maximization of the driving force for any section z. At this point, it is clear that the
material flux across the membrane is proportional to the partial pressure difference
at the membrane sides:

Ji ∝ pi,f − pi (3.60)

Therefore, the partial pressure gradient is maximized in every section:

@ z = 0, pi,r = pi,f , pi = pi,max

@ z = L, pi,r = pi,r,min, pi = 0

Assumptions 2 - 5 stated in section 3.2 holds true and a binary mixture A + B is
considered. However, differently from the previous cases, the flux depends on both
retentate and permeate conditions. A one-dimensional concentration profile is pre-
sumed at both side of the membrane. Therefore, constant composition is considered
in the radial direction. Referring to figure 3.8 the following equations can be written.

Overall material balance equations. First, the overall material balances on the
membrane module is written.

ṅp yα,p + ṅr(L) yα,r(L) = ṅf yα,f (3.61)

ṅp(L) [1− yα,p(L)] + ṅr(L) [yα,r(L)] = ṅf (1− yα,f ) (3.62)

Where the composition equations are again implied, being the two molar frac-
tions complementary: yα,r + yB,r = yα,p + yB,p = yα,f + yB,f = 1.

Figure 3.7: Schematic of membrane gas separation module characterized by counter-
current flow.
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Differential material balance equations. The material balances can be referred
to the differential element indicated by the dashed red line in figure 3.8. Note
that in this case the differential element includes both the retentate and the per-
meate side.

ṅr(z) yα,r(z) + ṅp(z + dz) yα,p(z + dz) =

ṅr(z + dz) yα,r(z + dz) + ṅp(z) yα,p(z) (3.63)

ṅr(z) [1− yα,r(z)] + ṅp(z + dz) [1− yα,p(z + dz)] =

ṅr(z + dz) [1− yα,r(z + dz)] + ṅp(z) [1− yα,p(z)] (3.64)

Equations 3.63 and 3.64 can written in differential form as

d(ṅr yα,r) = d(ṅp yα,p) (3.65)

d [ṅr (1− yα,r)] = d [ṅp (1− yα,p)] (3.66)

Flux equations. The flux is expressed by mean of the solution-diffusion model.
Both retentate and permeate flow rates could equally be computed in the defini-
tion of the membrane flux. In the following, the retentate flow rate is considered.

d(ṅr yα,r)

ds
=
d(ṅp yα,p)

ds
= −Qα

δ
[pf yα,r(z)− p yα,p(z)] (3.67)

d [ṅr (1− yα,r)]
ds

=
d [ṅp (1− yα,p)]

ds
=

−Qβ
δ

[pf [1− yα,r(z)]− p [1− yα,p(z)]] (3.68)

Figure 3.8: Differential element dz within the counter-current membrane module.
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The feed conditions, ṅf , yα,f , pf , which also provides the boundary conditions
for the differential equations, are assigned. The equations system presented above
can be re-arranged in a set of 4 linearly independent equations with 6 unknowns.
As a consequence, two degrees of freedom can be specified for the design problem.
One possibility for re-organizing the aforementioned equations leads to a system
composed by equations 3.62 - 3.61 and completed by,

ṅr
dyα,r
ds

=

=
yα,r − yα,p
yα,p − yα,f

[(1− yα,r) Q′α (pf yα,r − p yα,p)−

yα,r Q
′β [pf (1− yα,r)− p (1− yα,p)]] (3.69)

ṅr
dyα,p
ds

=

yα,r − yα,p
yα,r − yα,f

[(1− yα,p) Q′α (pf yα,r − p yα,p)−

yα,p Q
′β [pf (1− yα,r)− p (1− yα,p)]] (3.70)

Where both retentate and permeate properties must be intended as local quantities,
function of the independent coordinate z. The presented equations differ from those
solving the co-current flow case only in the fact that yα,r and ṅr are replaced by yα,f
and ṅf , respectively. The system can be solved by providing two specifications, con-
cerning either separation performance or energy consumption and membrane area.
A solving approach for a membrane module characterized by co-current flow is pre-
sented in appendix A.
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3.5 Design Considerations

3.5.1 Membrane Technology

As previously mentioned, operating variables and membrane technology are the two
principal components in the design of a membrane-based gas separation process.
Concerning the technology, two main properties are involved in the analysis: mem-
brane permeability, Qi, and membrane selectivity, αi,j . The former indicates the
ability of the membrane to permeate a gas, and refers to a given component i. The
latter indicates the ability of the membrane in separating the species i from a mixture
of two gases i + j, and thus refers to a couple of components i and j. These two
properties are given, respectively, by:

Qi = Di Ki (3.71)

αi,j =
Qi
Qj

=

(
Di

Dj

)(
Ki

Kj

)
(3.72)

Di is the permeate diffusion coefficient (expressed in cm2 / s), which is a measure
of the mobility of individuals molecules in the membrane; Ki is the sorption coeffi-
cient (expressed in cmi

3/cmpol
3). The term Di/Dj , the ratio of the diffusion coeffi-

cients of the two gases, represents the mobility selectivity, reflecting the different size
and shape of the two molecules; Ki/Kj , the ratio of the sorption coefficients, can be
viewed as the sorption selectivity, reflecting the relative solubility of the two gases
in the membrane material. It should be stressed that all membrane-based gas sep-
aration commercial applications involve polymeric materials. Furthermore, despite
the synthesis and evaluation of hundreds of new materials, more than 90 percent of
current commercial membranes are made from less than 10 materials, most of which
have been in used for decades.

In all polymers, the diffusion coefficient decreases with increasing permeant
molecular size. Indeed, large molecules interact with more segments of the
polymer chain than do small molecules. Hence, the mobility selectivity always
favors the passage of small molecules over large ones [1]. However, the magni-
tude of the mobility selectivity term depends significantly on whether the mem-
brane is above or below the glass transition temperature, Tg . When a material is
below such a temperature, the polymer chains are basically fixed and segmental
motion is limited. The material is then called a glassy polymer, being tough
and rigid. Above the glass transition temperature, the segments of the polymer
chains have sufficient thermal energy to allow limited rotation around the chain
backbone. This motion changes remarkably the mechanical properties of the
material, which becomes a rubber. The relative mobility of gases differs signif-
icantly in rubbers and glasses, as depicted in figure 3.9, from [1]. The figure
shows how the diffusion coefficient in glassy materials is small and decrease
more rapidly with the permeant size than in rubber materials. This implies a
smaller mobility selectivity for rubbery membranes than for glassy polymers.
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Figure 3.9: Diffusion coefficient as a function of molar volume for a variety of per-
meants in rubber and glassy polymers, [1].

The sorption coefficient increases with increasing condensability of the perme-
ant. This dependence on condensability turns into a dependence on molecular
diameter, because larger molecules are usually more condensable than smaller
ones. Figure 3.10 displays the sorption coefficient plotted against the molec-
ular volume. The figure states that the sorption selectivity favors larger, more
condensable molecules. However, contrarily to diffusion coefficient, the sorp-
tion coefficient is essentially constant in a wide range of chemically different
polymers. This is because gas sorption in most polymers behaves as though
the polymers were ideal liquid: It can be shown that all the ideal liquids should
have the same sorption for the same gas.

As a consequence, the balance between the diffusion coefficient and the sorption
coefficient, and therefore the permeability, is different for glassy and rubbery poly-
mers. The difference is illustrated by figure 3.11, presenting the balance between
sorption and diffusion in rubbery and glassy polymers. The natural rubber mem-
branes are highly permeable; permeability increases rapidly with increasing perme-
ant size because sorption dominates. The glass membranes are much less permeable;
the permeability decreases with increasing permeant size because diffusion domi-
nates.

Permeability and selectivity properties of polymers membranes for a number of
the most important gas separation applications have been summarized by Robeson
[6]. The Robeson plot, depicting membrane selectivity versus membrane perme-
ability, represents an important tool in preliminary gas separation membrane mod-
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Figure 3.10: Sorption coefficient as a function of molecular volume for natural rub-
ber membranes, [1].

Figure 3.11: Permeability as a function of molar volume for a rubbery and a glassy
polymers, [1].



DESIGN CONSIDERATIONS 59

Figure 3.12: Upper bound correlation for CO2/CH4 separation (TR, thermally re-
arranged polymers), [6].

ule design. An example of the Robeson plot for the separation of carbon dioxide
and methane is presented in figure 3.12. Such a separation currently finds indus-
trial applications in the context of biogas upgrading. However, it is worth noting
that the Robeson plot reports membrane properties based on pure gas measurements
at ambient pressure and temperature. However, the actual value of selectivity and
permeability for mixtures, at real industrial conditions, decreases significantly [7].

3.5.2 Operating Variables

Followng Baker’s dissertation presented in [1], some considerations can be done
concerning a membrane-based gas separation process. Recalling the definition of
the flux across the membrane,

Ji(z) =
Qi
δ

[pf yi,r(z)− p yi,p(z)] (3.73)

it is possible to note that yi,r(z) pf > yi,p(z) p,∀z must hold, in order to have
Ji > 0. This translate in the condition

yi,r(z)

yi,p(z)
≤ P

pf
= β, ∀z =⇒ yi,p(z)

yi,r(z)
≤ 1

β
= γ, ∀z (3.74)
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This implies that the maximum achievable separation is limited by the ratio be-
tween the retentate to the permeate pressure, indicated as γ.
Assuming a well-mixed configuration, with constant concentration profiles at both
sides of the membrane, equation 3.29 can be derived. Re-writing the equation in
terms of γ rather than β, a new expression can be obtained:

yα,p = γ
2

[
yα,f + 1

γ + 1
α−1 −

√(
yα,f + 1

γ + 1
α−1

)2

− 4 α yα,f
(α−1) γ

]
(3.75)

Expression 3.75 can be seen as composed by two limiting cases depending on the
relative magnitude of γ and α. First, if the membrane selectivity is much larger than
the ratio of retentate to permeate pressure, α >> γ = 1/β, then the expression can
be simplified as

yα,p = yα,r γ (3.76)

This is the so-called pressure ratio-limited region. In this region, the difference
between retentate and permeate sides is so small compared to the membrane selectiv-
ity that the membrane performance is determined solely by the pressure ratio across
the membrane, independently from the selectivity.
On the other hand, if the membrane selectivity is much smaller than the ratio of re-
tentate to permeate pressure, α << γ = 1/β, then expression 3.75 becomes (after
some manipulation and the application of l’Hôpital’s rule),

yα,p =
α yα,r

yα,r (α− 1) + 1
(3.77)

This is the so-called selectivity-limited region. In this region, the membrane se-
lectivity is so small that the separation performance is determined only by the se-
lectivity, independently from the pressure ratio. Of course, an intermediate region
between these two extreme cases is also present, where both pressure ratio and mem-
brane selectivity have a certain influence on the performance. Figure 3.13 illustrates
these three regions for a vapor/nitrogen separation, in which the calculated permeate
vapor molar fraction, yα,p is plotted versus the ratio of retentate to permeate pres-
sure, γ, for a membrane with a vapor / nitrogen selectivity of 30 [1]. Similarly, figure
3.14 reports the same regions as a function of the membrane selectivity, for a given
pressure ratio of 20. As a matter of fact, the relationship between pressure ratio and
selectivity is relevant because reflecting the trade-off between compression energy
and membrane area, i.e. operational and investment costs. Typical pressure ratios
are in the range of 5 - 20. Figure 3.14 states that if significant improvements can
be attained by increasing the selectivity from 10 to 20, negligible improvements are
obtained for a selectivity larger than 100.

Finally, it is worth noticing that different correlations exist between operating
variables, namely pressure ratio, membrane selectivity, membrane area, and mem-
brane separation performance, namely recovery and purity. Figure 3.15 shows the
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Figure 3.13: Calculated permeate vapor molar fraction for a membrane with va-
por/nitrogen selectivity α = 30 and a feed molar fraction yα,f = 0.01 as a function of
the pressure ratio [1].

Figure 3.14: Calculated permeate vapor molar fraction for a pressure ratio β = 20
and a feed molar fraction yα,f = 0.01 as a function of the membrane selectivity [1].
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recovery and purity maps (iso-lines) on the A - β plane for two exemplary cases,
with α = 30 and α = 50. Few basic conclusions can be drawn:

Recovery and purity have opposite behaviors against the membrane area. In
specific, recovery increases while purity decreases by increasing the area. This
is due to the permeation of the least permeant component along the module,
responsible for a degradation of the permeate purity.

An increase (decrease) in selectivity (permeability) leads to an increase (de-
crease) in purity (recovery) (negative slope of the Robeson’s upper bound).

For high selectivity and high pressure ratio the permeate purity is almost in-
dependent from the membrane area. On the contrary, for low selectivity and
pressure ratio the purity is almost independent from the pressure ratio.

Figure 3.15: Recovery and purity maps for two single-stage configurations with α =
30 and α = 50 (corresponding permeability on the Robeson plot).
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CHAPTER 4

MEMBRANE MODULES AND
PROCESSES

4.1 Membrane Modules

Membranes found their first significant application in the production of drinking
water at the end of World War II. Drinking water supplies serving large communities
in Germany and elsewhere in Europe had broken down, and filters to test for water
safety were needed urgently. However, by 1960, although the elements of modern
membrane science had been developed, no significant membrane industry existed.
The seminal discovery that transformed membrane separation from a laboratory to
an industrial process was the development, in the early 1960s, of the Loeb-Sourirajan
process for making defect-free, high-flux, anisotropic reverse osmosis membrane
[1]. With regards of gas separation, the first large scale industrial plant was applied
to uranium enrichment. The separation of U235F6 from U238F6 was performed.
Indeed, the molecular weight of UF6 (uranium hexafluoride), entirely depends on
the uranium isotope. U235F6 was enriched by using a cascade of finely micro-porous
metal membranes.
In general, when dealing with real industrial applications, few key aspects must be
taken into account for a membrane fabrication process to be successful:

Membrane separations
Rate controlled separation processes. Copyright c© 2016 SPL
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66 MEMBRANE MODULES AND PROCESSES

material with appropriate chemical, mechanical and permeation properties have
to be developed.

robust, thin, defect free membranes have to be fabricated.

efficient, high surface area, economical modules have to be designed.

Indeed, industrial membrane plants often require a membrane area in the range
of hundreds to thousands square meters to perform the separation on a commercial
scale. Therefore, methods for packaging large membrane areas economically and
efficiently are required. Different types of modules, depending on the different ap-
plications are used. Below, a list of the principal modules is presented.

Plate and Frame Membrane Modules. They were one of the earliest types of
membrane system. A schematic of a plate and frame membrane module for
reverse osmosis is illustrated in figure 4.1. Membrane, feed spacers and prod-
uct spacers are layered together between two end plates. The feed mixture is
forced across the surface of the membrane, enters the permeate channel, and
exit from a central permeate collection manifold [1]. Plate and frame units have
been developed for some small-scale applications. However, they are expen-
sive compared to alternative membrane modules, and still affected by leakages.
Currently, plate and frame modules are used in electrodialysis, pervaporation
and, in a limited number, in reverse osmosis and ultrafiltartion applications with
highly fouling feeds. Such modules can be operated both in co- and counter-
current flow.

Tubular Membrane Modules. This type of modules is characterized by a high
resistance to membrane fouling, due to the good fluid hydrodynamics, i.e. tur-
bulent flow. On the other hand, the cost is elevated due to the low surface to
volume ratio. For this reason, tubular modules are nowadays limited to ultra-
filtration applications, where the benefit connected to the the high resistance to

Figure 4.1: Schematic of a plate and frame module for everse osmosis, [2].
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Figure 4.2: Typical tubular ultrafiltration module design, [3].

fouling outweights their high cost. Typically, the tubes consist of a porous paper
of fiberglass, which serves as a support, with the membrane on the inside of the
tubes, as shown in figure 4.2. In a typical tubular membrane system, many tubes
are manifolded in series. The permeate is removed from each tube and sent to
a permeate collection header. A drawing of a 30-tube system is shown in figure
4.3. The feed stream is pumped through all the tubes connected in series. As
a consequence, it maintains a high velocity in the tubes, which helps to control
membrane fouling.

Figure 4.3: Tubular ultra-filtration system with 30 tubes connected in series, [1].

Spiral-Wound Membrane Modules. Spiral-wound membrane modules were used
in a number of early artificial kidney designs, and were originally developed for
industrial reverse osmosis applications. Nowadays, the are used for reverse
osmosis, ultra-filtration and gas separation. The design shown in figure 4.4
consists of a membrane envelope of spacers and membrane wound around a
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perforated central collection tube. The feed passes axially down the module
across the membrane envelope. The permeate spirals toward the center and ex-
its through the collection tube. The module is then operated in cross-current
flow.

For many years, the standard industrial reverse osmosis / gas separation spiral-
wound modules had an 8 inches diameter and were 40 inches long. However,
there is a trend toward increasing the module diameter. Similarly, a trend toward
a higher number of envelopes is recorded. Indeed, the multi-envelope design
minimizes the pressure drop encountered by the permeate fluid traveling toward
the central tube, by reducing the length of the collection pipe. The approximate
membrane area and number of membrane envelopes used in industrial 40 inches
long spiral-wound module are reported in table 4.1, [1].

Table 4.1: typical membrane area and number of membrane envelopes for 40 inches
long industrial spiral-wound modules. The thickness of the membrane spacers used
for different applications causes the variation in membrane area, [1].

module diameter [in] 2 6 8 16

number of membrane envelopes 4-6 6-10 15-30 50-100

membrane area [m2] 3-6 6-12 20-40 80-150

Four to six spiral-wound membrane modules are normally connected in series
inside a tubular pressure vessel, illustrated in figure 4.5. A typical 0.2 m diame-
ter tube containing six modules has a 150 - 250 m2 membrane area. In general,
spiral-wound modules are characterized by a fairly low manufacturing cost and
a high surface to volume ratio.

Hollow-Fiber Membrane Modules. Today hollow fiber membrane modules are
widely used for different membrane applications. They are found in two basic
geometries:

Figure 4.4: Exploded view for a spiral-wound membrane module, [4].
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Figure 4.5: Typical spiral-wound module design, [5].

– The shell-side feed design is illustrated in figure 4.6. This geometry is used,
for example, by Monsanto in their hydrogen separation systems and by Du
Pont (until about 2000) in their reverse osmosis systems [1]. A loop or
a closed bundle of fibers is contained in a pressure vessel. The system is
pressurized from the shell side; the permeate passes through the fiber wall
and exits through the open fiber ends. This design is fairly easy to make, and
allows very large membrane area to be contained in an economical system.
Because the fiber wall must support considerable hydrostatic pressure, the
fibers usually have small diameters and thick walls, typically 50 µm internal
diameter and 100 - 200 µm external diameter. This configuration is mostly
used in high-pressure applications, particularly gas separation and reverse
osmosis. It can be operated both in co-current and counter-current flow,
with the second having a favorable partial pressure build-up (see section
3.4).

– The second type of hollow-fiber module is the bore-side feed type, depicted
in figure 4.7. In this type of unit, the fibers are open at both ends; the feed
fluid is circulated through the bore of the fibers. In order to minimize pres-
sure drop inside the fibers, the diameters are larger than those of the fine
fibers used in the shell-side feed system. This geometry is mostly used in
ultra-filtration and pervaporation, mainly in co-current flow. Generally, they
are operated at pressure lower than 10 bar. In bore-side feed modules, it is
important to ensure that all of the fibers have identical fiber diameters and
permeances, since this can significantly influence the removal achieved by
the module [2]. Contrarily to the shell-side feed configuration, concentra-
tion polarization is well controlled in the bore-side feed system. Indeed, the
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Figure 4.6: Shell-side feed design for a hollow-fiber module, [1].

feed solution passes directly across the active surface of the membrane, and
no stagnant dead spaces are produced.

In general, the greatest single advantage of hollow fiber modules is the ability
to pack a very large membrane area into a single module. On the other hand,
bigger pressure drops are usually registered in this type of modules compared
to spiral-wound configurations. The advantage in terms of membrane area can
be evaluated by mean of the data provided by table 4.2, from [1].

Figure 4.7: Bore-side feed design for a hollow-fiber module, [1].
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Table 4.2: Effect of fiber diametr on membrane area and the number of fibers in a
module of 20 cm diameter and 1 m long, [1].
Module use High-pressure reverse osmosis and gas separation Low-pressure gas separation Ultrafiltration

Fiber diameter, [µm] 100 250 500 1000 2000

Number of fibers / module, [thousands] 1000 250 40 10 2.5

Membrane area, [m2] 315 155 65 32 16

Packing density, [cm2/cm3] 100 50 20 10 5

The table shows that, for the same module dimension, the hollow-fiber con-
figuration allows around ten times the area of a spiral-wound module. As the
diameter of the fibers in the module increases, the membrane area decreases.
Capillary ultra-filtration modules have almost the same area as equivalent-sized
spiral-wound modules.

4.2 Multistep and Multistage System Design

Because the membrane selectivity and pressure ratio achievable in a commercial
membrane system are limited, a one-stage membrane system may not provide the
desired separation. The problem is illustrated in figure 4.8, from [1], with the re-
moval of a volatile organic compound (VOC), which is the most permeable compo-
nent from a nitrogen feed gas.

The figure shows that 90% of the VOC in the feed stream is removed, with the
permeate stream containing approximately 4% of the permeable component. Nev-
ertheless, in many cases, 90% of removal of VOC from the feed is insufficient to
allow the residue gas to be discharged, and the enrichment of the component in the
permeate is also insufficient. If the main issue regards insufficient VOC removal
from the feed stream, a two-step system as shown in figure 4.9 can be implemented
to decrease the concentration of the permeable gas in the retentate.

Figure 4.8: One-stage vapor separation operation. The performance of this systems
was calculated for a cross-flow module using a vapor/nitrogen selectivity of 20 and
a pressure ratio of 20, [1].
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Figure 4.9: Two-stage system to achieve 99% vapor removal from the feed stream.
Selectivity of 20 and pressure ratio of 20, [1].

In this two-step system, the residue stream from the first membrane unit passes
across a second unit, where the VOC concentration is reduced by a further factor of
10, from 0.1% to 0.01%. Because the concentration of VOC in the feed to the second
membrane unit is low, the permeate stream is relatively diluted and is recirculated to
the feed stream. A multistep design of this type can achieve almost complete removal
of the permeable component. However, such a removal is attained at the expense of
increases in membrane area and power consumption (compression energy). As a rule
of thumb, the membrane area required to remove the last 9% of a component from
the feed equals the membrane area required to remove the first 90% [1].
In other cases, a 90% of removal is acceptable for the discharge stream from the
membrane unit, but a higher concentration is needed to make the permeate gas us-
able. In this situation, a two-stage system of the type shown in figure 4.10 is exploited
to enhance the concentration of the permeable gas in the permeate.

In a two-stage design, the permeate from the first membrane unit is recompressed
and sent to a second membrane unit, where a further separation is performed. The
final permeate is then twice enriched. In a perfectly efficient two-stage separation,
the residue stream from the second stage is reduced to the same concentration of the

Figure 4.10: Two-stage system to produce a highly concentrated permeate stream.
Selectivity of 20 and pressure ratio of 20, [1].
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original stream, which represent a minimum threshold for the separation process.
More complicated multistage/multistep combination processes can be designed, al-
though seldom used in commercial systems due to their complexity. More com-
monly, a recycle design is used. Some example is provided in the section below.

4.3 Recycle Designs

A simple recycle design, named a two-and-one-half-stage is shown in figure 4.11
[1]. In this design, the permeate from the first membrane stage is recompressed and
sent to a two-step second stage, where a portion of the gas permeates and is removed
as enriched product. The remaining gas passes to another membrane stage, which
brings the gas concentration close to the original feed value. The permeate from this
stage is mixed with the permeate from the first stage, forming a recycle loop. By
controlling the relative size of the two second stages, any desired concentration of
the more permeable component can be achieved in the product.

Figure 4.11: Two-and-one-half-stage system, [1].

Several types of recycle designs have been showed in literature. Although only
the two-and-one-half-stage is shown here, a comprehensive analysis can be found in
[1].
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APPENDIX A

DESIGN PROCEDURE FOR A CO-CURRENT

MEMBRANE MODULE FOR

GAS SEPARATION

The design procedure for a gas separation membrane module characterized by co-
current flow is here outlined. Among other authors, the problem was addressed by
[1] for high-flux asymmetric membranes. Figure A.1 depicts a single hollow fiber
operating in co-current mode with feed flow outside the fiber, i.e. shell-side feed.
The following is assumed:

Constant membrane properties along the membrane, i.e. constant permeability
and selectivity with temperature, pressure, composition.

One dimensional (1D) model, i.e. constant concentration profiles in radial di-
rection.

The porous supporting layer offers a negligible resistance to the gas flow.

Membrane separations
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Figure A.1: Asymmetric hollow-fiber membrane operating in co-current mode with
feed flow outside the fiber, [1].

No mixing of permeate fluxes of different compositions occurs inside the porous
supporting layer of the membrane (plug flow in the supporting layer).

Isothermal process.

Constant pressure at both sides of the membrane.

Negligible non-idealities occurring in actual membrane separation processes:
fiber deformation, non-uniform fluid distribution across the fiber bundle [2].

One of the main features of the model is that two different molar fractions for
the permeate side are introduced: yA,P is the permeate molar fraction in the bulk
phase, and y′A,P is the permeate molar fraction at the membrane interface. While the
former depends on the flow conditions at both side of the membrane, the latter solely
depends on the retentate conditions, since it is assumed the porous layer prevents any
mixing at permeate side.
In the following, the retentate and permeate quantities, i.e. subscripts R and P , must
be intended as referring to a generic section z along the membrane. Considering a
binary mixture A + B, the following equations can be written:

Overall material balance equations. The overall material balance from the feed
section to a generic section z can be written by referring to the green dashed
line in figure A.2.

ṅp + ṅr = ṅf (A.1)

ṅp yα,p + ṅr yα,r = ṅf yα,f (A.2)

As in chapter 3, the composition equations are implied, being the two molar
fractions complementary: yα,r + yβ,r = yα,p + yβ,p = yα,f + yβ,f = 1.

Differential material balance equations. Material balances can be referred to
the differential volumes indicated by the red dashed line in figure A.2 (retentate
side), by expressing the flux across the membrane.

J ds = −dṅr (A.3)
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Figure A.2: Differential element dz within the co-current flow membrane module.
The green dashed line represent a global material balance, while the red and blue
dashed lines identify the control volumes around retentate and permeate sides, re-
spectively.

J y′α,p ds = −d(ṅr yα,r) (A.4)

Where the minus sign indicates that a positive flux corresponds to a reduction in
the retentate flow rate, due to the material permeation across the membrane. At
the same way, the differential material balances can refer to the permeate side,
blue dashed line in the figure:

J ds = dṅp (A.5)

J y′α,p ds = d(ṅp yα,p) (A.6)

However, it should be noted that only one couple of equations between A.3 -
A.4 and A.5 - A.6 is necessary to complete the module design. In the following,
equations A.3 - A.4 will be implemeneted, i.e. retentate side.

Flux equations. The flux is expressed through the solution-diffusion model.
Considering the flux J as a local quantity, constant within the differential ele-
ment dz,

J y′α,p =
Qα
δ

(pf yα,r − p y′α,p) (A.7)

J (1− y′α,p) =
Qβ
δ

[
pf (1− yα,r)− p (1− y′α,p)

]
(A.8)
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The equation system composed by A.1 - A.4, A.7 - A.8, is solved to determine the
performance of the membrane module. As stated in chapter 3, either the separation
or the economic performance can be initially specified and the design completed
accordingly. The system includes 6 linearly independent equations and 8 unknowns:
ṅr, ṅp, yα,r, yα,p, y′α,p, J , p, A. The feed conditions are assumed to be given: ṅf ,
yα,f , pf , also providing for the boundary conditions for the differential equations.
The same procedure presented in section 3.3 can be applied. The only difference lays
in the interpretation of yα,p and y′α,p, defined above. As a consequence, yα,p assumes
a meaning along the whole membrane module, not only at the module output; indeed,
it can be computed for a generic z through equation . A similar methodology, with
few peculiarities related to the signs and the boundary conditions, can be applied to
a counter-current flow membrane module.
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APPENDIX B

PERMEATION UNITS AND CONVERSION

FACTORS

This appendix aims at providing indications in terms of the most common gas per-
meation units and conversion factors.

Table B.1: Gas permeation units.
Quantity Engineering units Literature units SI units

Permeation rate Standard ft3 / min kmol / s

Permeation flux ft3 / (ft2 day) cm / sec (STP) kmol / (m2 s)

Permeability ft3 ft / (ft2 day psi) Barrers kmol / (m s Pa)

Permeance ft3 / (ft2 day psi) Barrers / cm kmol / (m2 s Pa)

Membrane separations
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Table B.2: Barrers conversion factors.
Quantity Multiply By To get

Permeability Barrers 3.348 E-19 kmol / (m s Pa)

Permeability Barrers 4.810 E-08 ft3 (STP) / (ft psi day)

Permeance Barrers / cm 3.348 E-17 kmol / (m2 s Pa)

Permeance Barrers / cm 1.466 E-06 ft3 (STP) / (ft psi day)

Table B.3: Industry-specific gas measurements.
Industry-unit How-measured ft3 / (pound mole) kmol / msef

STP, Msef 1000 ft3 at 32 F 359.3 1.262

Gas industry, Msef 1000 ft3 at 60 F 379.8 1.194

Air industry, Mnsf 1000 ft3 at 70 F 387.1 1.172


