Modelling and Mathematical Methods in Process and Chemical Engineering

Belousov-Zhabotinskii reaction

The Belousov-Zhabotinskii reaction is actually a system of many coupled reactions. In a simplified description, the following reactions are considered:

$$
\begin{gathered}
\mathrm{BrO}_{3}^{-}+\mathrm{Br}^{-} \xrightarrow{r_{1}} \mathrm{HBrO}_{2}+\mathrm{HBrO} \\
\mathrm{HBrO}_{2}+\mathrm{Br}^{-} \xrightarrow{r_{2}} 2 \mathrm{HBrO}^{\mathrm{BrO}_{3}^{-}}+\mathrm{HBrO}_{2} \xrightarrow{r_{3}} 2 \mathrm{HBrO}_{2}+2 \mathrm{Ce}^{4+} \\
2 \mathrm{HBrO}_{2} \xrightarrow{r_{3}} \mathrm{BrO}_{3}^{-}+\mathrm{HBrO} \\
\mathrm{CH}_{2}(\mathrm{COOH})_{2}+\mathrm{Ce}^{4+} \xrightarrow{r_{5}} h \mathrm{Br}^{-}+\text {products }
\end{gathered}
$$

with the corresponding rates:

$$
\begin{align*}
& r_{1}=k_{1}\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]=k_{1} H^{2} A Y \tag{1a}\\
& r_{2}=k_{2}\left[\mathrm{H}^{+}\right]\left[\mathrm{HBrO}_{2}\right]\left[\mathrm{Br}^{-}\right]=k_{2} H X Y \tag{1b}\\
& r_{3}=k_{3}\left[\mathrm{H}^{+}\right]\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{HBrO}_{2}\right]=k_{3} H A X \tag{1c}\\
& r_{4}=k_{4}\left[\mathrm{HBrO}_{2}\right]^{2}=k_{4} X^{2} \tag{1d}\\
& r_{5}=k_{5}\left[\mathrm{CH}_{2}(\mathrm{COOH})_{2}\right]\left[\mathrm{Ce}^{4+}\right]=k_{5} B Z \tag{1e}
\end{align*}
$$

where $A=\left[\mathrm{BrO}_{3}^{-}\right], B=\left[\mathrm{CH}_{2}(\mathrm{COOH})_{2}\right], H=\left[\mathrm{H}^{+}\right], X=\left[\mathrm{HBrO}_{2}\right], Y=\left[\mathrm{Br}^{-}\right], Z=\left[\mathrm{Ce}^{4+}\right]$ and h is a stoichiometric coefficient which represents the ratio between the average number of Br^{-}ions produced and the number of Ce^{4+} ions consumed during the malonic oxidation step of the oscillation. Based on this simplified kinetic scheme and using the law of mass action one obtains the following set of kinetic equations* in the unknowns X, Y, Z. This model is known as the Oregonator.

$$
\left\{\begin{array}{l}
\frac{d X}{d t}=k_{1} H^{2} A Y-k_{2} H X Y+k_{3} H A X-2 k_{4} X^{2} \tag{2}\\
\frac{d Y}{d t}=-k_{1} H^{2} A Y-k_{2} H X Y+h k_{5} B Z \\
\frac{d Z}{d t}=2 k_{3} H A X-k_{5} B Z
\end{array}\right.
$$

[^0]In order to simplify the analysis of this system, we want to make it dimensionless (this will reduce the number of parameters). We begin by introducing the dimensionless variables

$$
\begin{equation*}
x=X / X_{0}, \quad y=Y / Y_{0}, \quad z=Z / Z_{0}, \quad \tau=t / t_{0}, \quad a=A / A_{0}, \quad b=B / B_{0} \tag{3}
\end{equation*}
$$

System (2) becomes

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=\frac{k_{1} H^{2} A_{0} Y_{0} t_{0}}{X_{0}} a y-k_{2} H Y_{0} t_{0} x y+k_{3} H A_{0} t_{0} a x-2 k_{4} X_{0} t_{0} x^{2} \tag{4}\\
\frac{d y}{d t}=-k_{1} H^{2} A_{0} t_{0} a y-k_{2} H X_{0} t_{0} x y+\frac{h k_{5} B_{0} Z_{0} t_{0}}{Y_{0}} b z \\
\frac{d z}{d t}=\frac{2 k_{3} H A_{0} X_{0} t_{0}}{Z_{0}} a x-k_{5} B_{0} t_{0} b z
\end{array}\right.
$$

Due to the third equation of system (4) we choose

$$
\begin{equation*}
t_{0}=\frac{1}{k_{5} B_{0}} \tag{5}
\end{equation*}
$$

as reference time and system (4) becomes

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=\frac{k_{1} H^{2} A_{0} Y_{0}}{k_{5} B_{0} X_{0}} a y-\frac{k_{2} H Y_{0}}{k_{5} B_{0}} x y+\frac{k_{3} H A_{0}}{k_{5} B_{0}} a x-\frac{2 k_{4} X_{0}}{k_{5} B_{0}} x^{2} \tag{6}\\
\frac{d y}{d t}=-\frac{k_{1} H^{2} A_{0}}{k_{5} B_{0}} a y-\frac{k_{2} H X_{0}}{k_{5} B_{0}} x y+\frac{h Z_{0}}{Y_{0}} b z \\
\frac{d z}{d t}=\frac{2 k_{3} H A_{0} X_{0}}{k_{5} B_{0} Z_{0}} a x-b z
\end{array}\right.
$$

in order to eliminate the fraction that multiplies the third term of the first equation of (6), we multiply that equation by

$$
\begin{equation*}
\varepsilon=\frac{k_{5} B_{0}}{k_{3} H A_{0}} \tag{7}
\end{equation*}
$$

which yields

$$
\left\{\begin{align*}
\varepsilon \frac{d x}{d t} & =\frac{k_{1} H Y_{0}}{k_{3} X_{0}} a y-\frac{k_{2} Y_{0}}{k_{3} A_{0}} x y+a x-\frac{2 k_{4} X_{0}}{k_{3} H A_{0}} x^{2} \tag{8}\\
\frac{d y}{d t} & =-\frac{k_{1} H^{2} A_{0}}{k_{5} B_{0}} a y-\frac{k_{2} H X_{0}}{k_{5} B_{0}} x y+\frac{h Z_{0}}{Y_{0}} b z \\
\frac{d z}{d t} & =\frac{2 k_{3} H A_{0} X_{0}}{k_{5} B_{0} Z_{0}} a x-b z
\end{align*}\right.
$$

the second term of the first equation of (8) implies that the reference concentration Y_{0} should be chosen as

$$
\begin{equation*}
Y_{0}=\frac{k_{3} A_{0}}{k_{2}} \tag{9}
\end{equation*}
$$

which gives

$$
\left\{\begin{align*}
\varepsilon \frac{d x}{d t} & =\frac{k_{1} H A_{0}}{k_{2} X_{0}} a y-x y+a x-\frac{2 k_{4} X_{0}}{k_{3} H A_{0}} x^{2} \tag{10}\\
\frac{d y}{d t} & =-\frac{k_{1} H^{2} A_{0}}{k_{5} B_{0}} a y-\frac{k_{2} H X_{0}}{k_{5} B_{0}} x y+\frac{h k_{2} Z_{0}}{k_{3} A_{0}} b z \\
\frac{d z}{d t} & =\frac{2 k_{3} H A_{0} X_{0}}{k_{5} B_{0} Z_{0}} a x-b z
\end{align*}\right.
$$

In the next step we eliminate the fraction that multiplies the last term of the first equation of (10) be defining

$$
\begin{equation*}
X_{0}=\frac{k_{3} H A_{0}}{2 k_{4}} \tag{11}
\end{equation*}
$$

and we end up with

$$
\left\{\begin{align*}
\varepsilon \frac{d x}{d t} & =\frac{2 k_{1} k_{4}}{k_{2} k_{3}} a y-x y+a x-x^{2} \tag{12}\\
\frac{d y}{d t} & =-\frac{k_{1} H^{2} A_{0}}{k_{5} B_{0}} a y-\frac{k_{2} k_{3} H^{2} A_{0}}{2 k_{4} k_{5} B_{0}} x y+\frac{h k_{2} Z_{0}}{k_{3} A_{0}} b z \\
\frac{d z}{d t} & =\frac{k_{3}^{2} H^{2} A_{0}^{2}}{k_{4} k_{5} B_{0} Z_{0}} a x-b z
\end{align*}\right.
$$

Finally we have to define a reference concentration Z_{0} and the third equation of (12) implies the choice

$$
\begin{equation*}
Z_{0}=\frac{\left(k_{3} H A_{0}\right)^{2}}{k_{4} k_{5} B_{0}} \tag{13}
\end{equation*}
$$

which yields

$$
\left\{\begin{align*}
\varepsilon \frac{d x}{d t} & =\frac{2 k_{1} k_{4}}{k_{2} k_{3}} a y-x y+a x-x^{2} \tag{14}\\
\frac{d y}{d t} & =-\frac{k_{1} H^{2} A_{0}}{k_{5} B_{0}} a y-\frac{k_{2} k_{3} H^{2} A_{0}}{2 k_{4} k_{5} B_{0}} x y+\frac{h k_{2} k_{3} H^{2} A_{0}}{k_{4} k_{5} B_{0}} b z \\
\frac{d z}{d t} & =a x-b z
\end{align*}\right.
$$

multiplying the second equation of (14) by

$$
\begin{equation*}
\delta=\frac{2 k_{4} k_{5} B_{0}}{k_{2} k_{3} H^{2} A_{0}} \tag{15}
\end{equation*}
$$

gives

$$
\left\{\begin{align*}
\varepsilon \frac{d x}{d t} & =\frac{2 k_{1} k_{4}}{k_{2} k_{3}} a y-x y+a x-x^{2} \tag{16}\\
\delta \frac{d y}{d t} & =-\frac{2 k_{1} k_{4}}{k_{2} k_{3}} a y-x y+2 h b z \\
\frac{d z}{d t} & =a x-b z
\end{align*}\right.
$$

and introducing

$$
\begin{equation*}
q=\frac{2 k_{1} k_{4}}{k_{2} k_{3}}, \quad f=2 h \tag{17}
\end{equation*}
$$

we eventually obtain the dimensionless form of (2) given on the problem sheet, that reads:

$$
\left\{\begin{array}{l}
\varepsilon \frac{d x}{d \tau}=q a y-x y+a x-x^{2} \tag{18}\\
\delta \frac{d y}{d \tau}=-q a y-x y+f b z \\
\frac{d z}{d \tau}=a x-b z
\end{array}\right.
$$

Note that the transformation into dimensionless form has reduced the number of parameters form six (k_{j}, h where $j=1,2,3,4,5$) to four and typical values are

$$
\begin{equation*}
\varepsilon=0.12, \quad \delta=0.0006, \quad q=0.0008, \quad f=\mathcal{O}(1) \tag{19}
\end{equation*}
$$

[^0]: *Mazzotti M., G. Serravalle, and M. Morbidelli, Chem. Eng. Sci. 49 (1994) 681-688

