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M. Bäbler, M. Mazzotti

1 Fundamental stability theorem

Theorem 1.1. (Stability of linear systems)1

Given the linear system with constant coefficients

dx

dt
= Ax (1.1)

The origin is

(a) asymptotically stable if Re{λj} < 0, ∀λj.

(b) marginally stable if there exists at least one eigenvalue with Re{λj} = 0.

(c) unstable if there exists at least one eigenvalue with Re{λj} > 0.

Theorem 1.2. (Stability of nonlinear systems)2

Given the autonomous nonlinear system

dy

dt
= f(y) (1.2)

a steady state ys that is obtained from f(ys) = 0 is

(a) asymptotically stable if the corresponding linearized systems is asymptotically stable

(b) unstable if the corresponding linearized system is unstable.

(c) No conclusion can be derived about the nature of the steady state if the corresponding linearized

system is marginally stable.

1Varma A., Morbidelli M., Mathematical Methods in Chemical Engineering, Oxford University Press 1997, section
2.11

2Section 2.13
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2 Hopf bifurcation theorem

Theorem 2.1. (Hopf Bifurcation)3

Consider the n-dimensional autonomous system

dx

dt
= f(x, µ) (2.1)

which depends upon a parameter µ.

(i) Let f(x0, µ0) = 0, so that x0 is the steady state corresponding to the parameter value µ0.

(ii) Furthermore, let the Jacobian J(x0, µ0) have a simple pair of purely imaginary eigenvalues

λ(µ0) = ±iω0 with the remaining eigenvalues having strictly negative real parts.

(iii) Finally, let the real part of λ indeed pass through zero as µ crosses µ0. That is,

d

dµ
Re (λ)

∣

∣

∣

∣

µ0

6= 0

In case all three conditions hold there is a birth of periodic solutions as µ crosses µ0 (emergence in

one direction of crossing and disappearance in the opposite direction).

Remarks

� The period of the oscillatory solution at birth (i.e., a zero-amplitude oscillation) is 2π/ω0.

� The stability of the periodic solutions is related to the direction of bifurcation. Possible situ-

ations are that near µ0 either unstable periodic solutions surround stable steady states (sub-

critical bifurcation) or stable periodic solutions surround unstable steady states (supercritical

bifurcation).
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3Varma A., Morbidelli M., Mathematical Methods in Chemical Engineering, Oxford University Press 1997, section
2.20
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� the Hopf bifurcation theorem is a strictly local result. It provides information only near the

bifurcation point, as the parameter µ crosses µ0.
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3 Poincaré-Bendixon theorem

Theorem 3.1. (Poincaré-Bendixon)4

Consider the 2-dimensional autonomous system

dx

dt
= f(x) (3.1)

in R
2. If there exists a closed annular region R bounded by two closed curves C1 and C2, with C2

inside C1, such that all trajectories crossing C1 and C2 enter the annular region R between them,

and if R has no steady state in it, then there exists at least one limit cycle in R that attracts all

trajectories as t → ∞.

xs

C

C1

2

R

Remarks

� Having a closed curve C2 from which all trajectories are escaping requires the region enclosed

by C2 to have an unstable steady state (node or focus) xs in it. The construction of the curve

C2 is then trivial.

� The closed curve C1 describes a confined set enclosing xs. The requirement that all trajectories

crossing C1 enter the confined set is expressed through the scalar product,

f(x) · n(x) < 0

where x ∈ C1 and where n(x) is the normal pointing outward of C1.

� The Poincaré-Bendixon theorem applies also to an unstable limit cycle when all trajectories

crossing C1 and C2 escape from the annular region R.

Theorem 3.2. (Bendixon criterion)5

Consider the 2-dimensional autonomous system

dx

dt
= f(x) (3.2)

4Jordan D.W., Smith P., Nonlinear Ordinary Differential Equations, 4th edition, Oxford University Press 2007
5Verhulst F., Nonlinear Differential Equations and Dynamical Systems, 2nd edition, Springer 1996
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in D ⊂ R
2 where D is simply conected (there are no ”holes” or ”separate parts”), that is, f(x) is

continuously differentiable in D. Then, (3.2) can only have periodic solutions in D if ∇ · f changes

sign in D, or ∇ · f = 0 in D.

Remarks

� The theorem says only whether periodic solutions can exist; having ∇ · f not changing sign in

D proves only the non-existence of limit cycles.
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4 An example: The Brusselator

The Brusselator describes a hypothetical oscillating chemical reaction. In dimensionless form, the

equations read as
{

ẋ = 1− (1 + b)x+ ax2y

ẏ = bx− ax2y
(4.1)

where x, y > 0 are dimensionless concentrations and a, b > 0 are parameters (the rate constants).

The analysis of (4.1) proceeds as follows:

1. Steady States. The system (4.1) has a single steady state:

xs = (xs, ys) = (1, b/a) (4.2)

2. Stability. Linearizing (4.1) leads to the Jacobian,

J =

[

−(1+b)+2axy ax2

bx−2axy −ax2

]

(4.3)

Evaluated at xs = (1, b/a) gives

J(1,b/a) =

[

b−1 a

−b −a

]

(4.4)

which admits

det J(1,b/a) = a > 0, tr J(1,b/a) = b− 1− a (4.5)

Having a positive determinant implies that the steady state xs cannot be a saddle and it is either a

stable or an unstable node or focus, depending on the value of the trace. It follows that

{

b < a+1 ⇒ stable node or focus (negative trace)

b > a+1 ⇒ unstable node or focus (positive trace)
(4.6)

3. Nullclines. The nullclines follow from equating the right hand side of (4.1) to zero. From the first

of (4.1) we get the ẋ-nullcline:

y =
(1 + b)x− 1

ax2
, (4.7)

whereas from the second of (4.1) we get the (two) ẏ-nullclines:

x = 0, y =
b

ax
. (4.8)

Fig. 1ab shows the nullclines for a stable and an unstable case, respectively. Note that the vector

field does not allow for drawing any conclusion of a limit cycle. Therefore, to prove the existence of

a limit cycle, we apply our two theorems.

4. Divergence of the flux (Bendixon criterion). The divergence ∇ · f(x, y) equates from (4.1) to

∇ · f(x, y) =
∂f1
∂x

+
∂f2
∂y

= −(1+b) + 2axy − ax2 (4.9)

6



Institute of Process Engineering
Prof. Dr. M. Mazzotti

FS 2012
March 13, 2012

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

x

y

dx/dt=0

dy/dt=0

∇⋅ f=0

Brusselator: a=1, b=1

dx/dt=0

dy/dt=0

∇⋅ f=0

Brusselator: a=1, b=1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

x

y

dx/dt=0

dy/dt=0

∇⋅ f=0

Brusselator: a=1, b=3

(a) (b)

Figure 1: Nullclines, (4.7) and (4.8), and the isoline of the divergence (4.9) for the case of a
stable (a) and an unstable (b) steady state. Note that the vector field is normalized,
i.e., the length of the vectors does not correspond to the local velocity.

which is obviously equal to the trace of the Jacobian (4.3). Solving (4.9) for ∇ · f = 0 gives

y =
(1+b) + ax2

2ax
(4.10)

which describes the line where the divergence vanishes; above this line the divergence is positive

whereas below this line it is negative. Fig. 1 shows this line. Notably, for both the stable and the

unstable case the divergence changes sign in the domain of (4.1). Thus, limit cycles are possible in

both cases.

5. Confined Set (Poincaré-Bendixon). The confined set (i.e., the curve C1) describes a closed curve

where all crossing trajectories are pointing inwards (outwards) in case of a stable (unstable) limit

cycle, respectively. The construction of a confined set is in general a rather cumbersome task. For

the present example where (4.1) is confined in the first quadrant (x, y > 0) we suggest to construct

C1 as a polygon, where we start the construction of the polygon by considering a segment lying on

the x-axis.

1 The first segment is taken as a segment lying on the x-axis (Fig. 2), i.e., y = 0. The flux

vector on this segment reads as

f(y=0) = (1− (1 + b)x, bx)T . (4.11)

The unit normal orthogonal to the first segment pointing away from the steady state is n =

(0, −1)T . Hence, f · n = −bx < 0 which holds for x > 0. Thus, along the positive x-axis the

flux is pointing inwards.

2 Next, we consider a segment parallel to the y-axis left hand side to the steady state (Fig. 2),

say x = xL < xs. The flux on this segment reads as

f(x=xL) =

(

1− (1 + b)xL + ax2Ly

bxL − ax2Ly

)

(4.12)
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The unit normal orthogonal to this second segment pointing away from the steady state is

n = (−1, 0)T . Hence, f · n = −1 + (1 + b)xL − ax2Ly < 0. This condition is fulfilled when y lies

above the ẋ-nullcline (4.7), which translates into a condition for xL:

0 < xL <
1

1 + b
(4.13)

3 We continue by considering a segment parallel to the x-axis that lies above the steady state,

say y = yU > ys (Fig. 2). The flux on this segment reads as,

f(y=yU ) =

(

1− (1 + b)x+ ax2yU

bx− ax2yL

)

(4.14)

The unit normal orhogonal to this segment is pointing away from the steady state is n = (0, 1)T .

Hence, f · n = bx− ax2yU < 0 from which it follows that yu must lie above the ẏ-nullcline (4.8)

yU >
b

axL
(4.15)

4 Next, we were to consider a segment parallel to the y-axis right hand side to the steady state,

x = xR > xs, say. The flux along this segment reads as

f(x=xR) =

(

1− (1 + b)xR + ax2Ry

bxR − ax2Ry

)

(4.16)

Further, n = (1, 0)T and f ·n = 1− (1+ b)xR + axRy < 0. From this it follows that this fourth

segment has only a flux pointing inwards for y lying below the ẋ-nullcline.

This means that the confined set with inward flux cannot be constructed as rectangle.

5 Inevitably, we need a fifth segment connecting the third and the forth segment. Here, we

propose this fifth segment to be a straight line of negative slope m, say y = q − mx, where

m > 0 and q > max(ys +mxs, yU +mxL) such that the line lies above the steady state, and it

intersects the third segment (Fig. 2). The unit normal to this segment pointing away from the

steady state is n = (m, 1)T . The flux along this line equates to

f(y=q−mx) =

(

1− (1 + b)x+ ax2(q −mx)

bx− ax2(q −mx)

)

(4.17)

The scalar product is

f · n = m
(

1− (1 + b)x+ ax2(q −mx)
)

+ bx− ax2(q −mx) < 0

which is quadratic in m. Analytical treatment of this inequality is cumbersome. Therefore we

arbitrary choose a value for m and see if the inequality is valid. Inspecting the vector field hints

that m = 1 might be a promising candidate: Setting m = 1 simplifies the above equation to

f · n = 1− x < 0

which holds for x > 1. Hence, a straight line with a negative slope m = 1 that intersects with
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Figure 2: Confined set.

the third segment at x > 1 (that is, right to the steady state) has everywhere a flux that is

pointing inwards. Note that this finding makes the forth segment dispensable.

Remarks.

� A confined set, i.e., a curve C1, is found in both cases when the steady state is stable

and unstable. However, only in the case of an unstable steady state we can find a curve

C2 encompassing the steady state on which all crossing trajectories are flowing outwards.

Hence, according to theorem 2 only the case where the steady state is unstable admits a

limit cycle. This is confirmed by solving (4.1) numerically. Solution for a set of different

ICs is shown in Fig. 3.

� There are many ways to construct a confined set.
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Figure 3: Trajectories for various ICs. In (a) the steady state (1, b/a) is stable whereas in (b)
it is unstable. The latter case admits a stable limit cycle.
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