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 To go from A to B, does the robot need to know where it 
is?
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Introduction
Do we need to localize or not?
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 How to navigate between A and B
 navigation without hitting obstacles
 detection of goal location

 Possible by following always the left wall
 However, how to detect that the goal is reached
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 Following the left wall is an example of “behavior based navigation”
 It can work in some environments but not in all
 With which accuracy and reliability do we reach the goal?
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 As opposed to behavior based navigation is “map based navigation”
 Assuming that the map is known, at every time step the robot has to know where it 

is. How?
 If we know the start position, we can use wheel odometry or dead reckoning. Is 

this enough? What else can we use?
 But how do we represent the map for the robot?
 And how do we represent the position of the robot in the map? 
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 Global localization
 The robot is not told its initial position
 Its position must be estimated from scratch

 Position Tracking
 A robot knows its initial position and “only” has to accommodate 

small errors in its odometry as it moves
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 Localization based on external sensors, beacons or 
landmarks

 Odometry

 Map Based Localization
 without external sensors or artificial landmarks
 just use robot onboard sensors
 Example: Probabilistic Map Based Localization
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Introduction
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 Triangulation
 Ex 1: Poles with highly reflective surface and a laser for detecting them
 Ex 2: Coloured beacons and an omnidirectional camera for detecting them 

(example: RoboCup or autonomous robots in tennis fields)
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Beacon Based Localization
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 KIVA Systems, Boston (MA) (acquired by Amazon in 2011)
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Introduction
Beacon Based Localization

Unique marker with known
absolute 2D position in the

map

Prof. Raff D'Andrea, ETH
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 High resolution (from VGA up to 16 Mpixels)
 Very high frame rate (several hundreds of Hz)
 Good for ground truth reference and multi-robot control strategies
 Popular brands: 
 VICON (10kCHF per camera), 
 OptiTrack (2kCHF per camera)
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Motion Capture Systems
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 Consider a mobile robot moving in a known environment.
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Map-based localization
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 Consider a mobile robot moving in a known environment.
 As it starts to move, say from a precisely known location, 

it can keep track of its motion using odometry.
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 Consider a mobile robot moving in a known environment.
 As it starts to move, say from a precisely known location, 

it can keep track of its motion using odometry.
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Sensor reference frame
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 Consider a mobile robot moving in a known environment.
 As it starts to move, say from a precisely known location, 

it can keep track of its motion using odometry.
 The robot makes an observation and updates its position 

and uncertainty
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Introduction
Map-based localization

Sensor reference frame
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 Probability theory → error propagation, sensor fusion

 Belief representation  → discrete / continuous
(map/position)

 Motion model → odometry model

 Sensing → measurement model
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Ingredients
Probabilistic Map-based localization
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a) Continuous map with 
single hypothesis probability 
distribution ݌ሺݔሻ

b) Continuous map with 
multiple hypotheses probability 
distribution ݌ሺݔሻ

c) Discretized metric map (grid ݇) with 
probability distribution ݌ሺ݇ሻ

d) Discretized topological map 
(nodes ݊) with probability 
distribution ݌ሺ݊ሻ
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Probabilistic localization belief representation
ሻݔሺ݌

ݔ
ሻݔሺ݌

ݔ
ሻݔሺ݌

݇
ሻݔሺ݌

A B C D E F G
݊

Kalman Filter
Localization

Markov Localization
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 Continuous

 Precision bound by sensor data
 Typically single hypothesis pose 

estimate
 Lost when diverging (for single 

hypothesis)
 Compact representation and 

typically reasonable in 
processing power.

 Discrete

 Precision bound by resolution of 
discretisation

 Typically multiple hypothesis 
pose estimate

 Never lost (when diverges 
converges to another cell)

 Important memory and 
processing power needed. (not 
the case for topological maps)
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Belief Representation
Characteristics
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 Definition
 Dead reckoning (also deduced reckoning or odometry) is the 

process of calculating vehicle's current position by using a 
previously determined position and estimated speeds over the 
elapsed time

 Robot motion is recovered by integrating proprioceptive 
sensor velocities readings
 Pros: Straightforward
 Cons: Errors are integrated -> unbound

 Heading sensors (e.g., gyroscope) help to reduce the 
accumulated errors but drift remains
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Odometry
The Differential Drive Robot (1)
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 Kinematics
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Odometry
Wheel Odometry
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Can you demonstrate these equations?

This term comes from the application 
of the Instantaneous Center of Rotation
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 Error model
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Odometry
Odometric Error  Propagation
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 Note: Errors perpendicular to the direction of movement are growing much 
faster!
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Odometry
Growth of Pose uncertainty for Straight Line Movement
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 Note: Errors ellipse does not remain perpendicular to the direction of 
movement!
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Odometry
Growth of Pose uncertainty for Movement on a Circle
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 Note: Errors are not shaped like ellipses!
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Odometry
Example of non-Gaussian error model

[Fox, Thrun, Burgard, Dellaert, 2000]

Courtesy AI Lab, Stanford
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Deterministic Non-Deterministic 
(Systematic) (Non-Systematic) 

 Deterministic errors can be eliminated by proper calibration of the system. 
 Non-Deterministic errors are random errors. They have to be described by 

error models and will always lead to uncertain position estimate.

 Major Error Sources in Odometry:
 Limited resolution during integration (time increments, measurement resolution)
 Misalignment of the wheels (deterministic)
 Unequal wheel diameter (deterministic)
 Variation in the contact point of the wheel (non deterministic)
 Unequal floor contact (slippage, non planar …) (non deterministic)
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Odometry
Error sources
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 The unidirectional square path experiment

 BILD 1 Borenstein
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Odometry
Calibration of systematic errors [Borenstein 1996]
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 The bi-directional square path experiment

 BILD 2/3 Borenstein
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Odometry
Calibration of Errors II (Borenstein [5])
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Kalman Filter Localization | in summery

ሻݔሺ݌

ݔ
௧௠ݔ

Observation:
Probability of 

making this 
observation

ො௧ݔ

Prediction:
Robot’s belief 
before the 
observation

௧ݔ

Estimation:
Robot’s belief 

update

௧ݔ

1. Prediction (ACT) based on previous estimate and odometry
2. Observation (SEE) with on-board sensors
3. Measurement prediction based on prediction and map
4. Matching of observation and map
5. Estimation → position update (posteriori position)
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ACT | using motion model and its uncertainties

prior beliefܾ݈݁ ௧ିଵݔ
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ACT | using motion model and its uncertainties

prior belief
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prediction update
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SEE

Localization add-ons 32

SEE | estimation of position based on perception and map

prediction updateܾ݈݁ ௧ݔ
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