Mobile Robots | Summery
Autonomous Mobile Robots

Roland Siegwart, Margarita Chli, Juan Nieto, Nick Lawrance
Introduction | probabilistic map-based localization

- Localization
- Map Building
- Perception
 - Sensing
 - Information Extraction
 - raw data
 - environment model
 - local map
- "position"
 - global map
- Cognition
 - Path Planning
 - path
 - Path Execution
 - actuator commands
- Acting
- Motion Control
- Real World Environment

see-think-act

knowledge, data base

mission commands
Legged Robots and Kinematics

- Types and application of legged systems
 - Number of legs
 - Analogy to nature
- Static and dynamic stability
- Locomotion control

- Basics of rigid body kinematics
 - Translation, rotations, and homogeneous transformation
 - Translational and angular velocities
 - Rigid body kinematics formulation
 - Vector differentiation in moving coordinate systems
Wheeled Locomotion

- Wheeled types and arrangements

- Kinematics
 - Constraints imposed by wheels
 - Forward or inverse differential kinematics

- Analysis of the differential kinematics equations
 - the degree of maneuverability = degree of mobility + degree of steerability
Computer Vision | Projective Geometry

- Perspective projection
 - Intrinsic and extrinsic parameters

- Stereo vision
 - Correspondence search
 - Rectification
 - Disparity map

- Structure from motion
 - Epipolar geometry
 - Epipolar constraint
 - Essential matrix
 - 8-point algorithm

Perspective Projection Matrix

\[\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K[R|T] \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \]

Disparity

\[Z_p = \frac{bf}{u_l - u_r} \]

\[R, T = \]
Image Saliency | image filtering & place recognition

Image Filtering:

Correlation vs. Convolution
- Use in template matching, smoothing & taking the derivative of an image

- **Image filtering for Edge Detection**
- **Point Features:** Harris, SIFT, FAST, BRIEF, BRISK & their characteristics e.g. scale/rotation invariance, computational time

Building and using the visual vocabulary for Place Recognition

Examples of Visual Words
The Error Propagation Law

- How uncertainties propagate through a function.

- **Line Fitting algorithms** for image/laser point clouds
 - Split-and-merge, RANSAC, Hough Transform,..
 - How they work & their relative characteristics and applications

Courtesy of ETH - ASL
Localization | where am I?

- **SEE**: The robot queries its sensors → finds itself next to a pillar

- **ACT**: Robot moves one meter forward
 - motion estimated by wheel encoders
 - accumulation of uncertainty

- **SEE**: The robot queries its sensors again → finds itself next to a pillar

- Belief update (information fusion)
SLAM | approaches & current challenges

- What is SLAM and how does it work?
- The graphical representation SLAM & the approaches to solve it:
 - Full graph optimization
 - Filtering
 - Keyframe-based

Popular techniques & how they work:
- EKF SLAM via MonoSLAM [Davison et al. 2007]

SLAM today & Challenges
Motion Planning | the planning problem
Motion Planning | hierarchical decomposition & approaches

1. Local collision avoidance
 - Dynamic Window Approach
 - (Reciprocal) Velocity Obstacles
 - Local potential fields

2. Global planning
 - Harmonic potential fields
 - Graph search (BF, Dijkstra, A*)
 - Randomized tree search (RRT)
Exam

- **Type**
 - Written session examination

- **Language of examination**
 - English

- **Course attendance confirmation required**
 - No

- **Repetition**
 - The performance assessment is only offered in the session after the course unit. Repetition only possible after re-enrolling.

- **Mode of examination**
 - written 120 minutes

- **Aids**
 - 4 A4-pages personal summary; Calculator
Exam | Wednesday 15.08.2017, 14:00-16:00

- Content of the exam:
 - MOOC (video segment, exercises, quizzes)
 - Book “Autonomous Mobile Robots” and add on slides

- Mode: The exam will be a combination of
 - Multiple Choice (comprehensive) 20-30%
 - Comprehension questions
 - Calculations, similar to exercises, but simpler and solvable without computer

- Two preparation sessions:
 - First: around 2 weeks before the exam
 - Second: 2-3 day before the exam

- More information about the preparation session and an example exam will be sent to you before the end of June.
Exam (example exercise exam)

Autonomous Mobile Robots - Exercise Exam

Roland Siegwart, Margarita Chli, Martin Ruffli

Date of Exam: Exercise summer 2016

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Multiple Choice</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>B. Mobile Robot Kinematics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>C. Forward Kinematics</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>D. Kinematic Constraints</td>
<td>8+2</td>
<td></td>
</tr>
<tr>
<td>E. Stereo Vision</td>
<td>7+1+2+5</td>
<td></td>
</tr>
<tr>
<td>F. Markov Localization</td>
<td>4+4</td>
<td></td>
</tr>
<tr>
<td>G. Kalman Filter Based Localization</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>H. SLAM</td>
<td>6+3+2+4</td>
<td></td>
</tr>
<tr>
<td>I. Graph Search: Dijkstra’s Algorithm</td>
<td>6+5+2</td>
<td></td>
</tr>
<tr>
<td>J. Collision Avoidance: Velocity Obstacle Approach</td>
<td>2+2+3</td>
<td></td>
</tr>
</tbody>
</table>
Exam (example exercise exam)

A. Multiple Choice Questions

Decide whether the following statements are true or false. Cross the checkbox on the corresponding answer.
You will be credited 1 point for a correct answer, while 1 point will be subtracted from the total, if your answer is wrong.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In a holonomic system, the measure of the traveled distance of each wheel is sufficient to calculate the final position of the robot.</td>
<td>TRUE</td>
</tr>
<tr>
<td>2</td>
<td>For a robot with 2 degrees of maneuverability, position of instantaneous center of rotation is constrained to a line.</td>
<td>TRUE</td>
</tr>
<tr>
<td>3</td>
<td>Open-loop control can be used to move the robot in the unknown environment.</td>
<td>TRUE</td>
</tr>
<tr>
<td>4</td>
<td>Non-holonomic robot is able to move instantaneously in any direction in the space of its degrees of freedom.</td>
<td>TRUE</td>
</tr>
</tbody>
</table>
Exam (example exercise exam)

B. Mobile Robot Kinematics

Please specify degrees of maneuverability, mobility and steerability for the following three-wheel configurations and explain why.

Differential Tricycle Omnidirectional