Autonomous Mobile Robots

Exercise 6 : Dijkstra’s Algorithm and the Dynamic Window Approach for Motion Planning

Daniel Dugas, Rik Bähnemann
Input: Obstacle Map, Start Pose, Goal Pose
Output: Feasible Robot Path
Algorithm:
1. Create distance field with Dijkstra
2. While (not at goal):
 1. Follow gradient with DWA
- While queue is not empty and not at goal…
- Pop front node from queue
- Expand and add new nodes to queue
- Resolve double insertions

Sorted by cost
Recap Dijkstra

...
Recap Dijkstra

<table>
<thead>
<tr>
<th></th>
<th>2.41</th>
<th>2</th>
<th>2.41</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.41</td>
<td>1.41</td>
<td>1</td>
<td>1.41</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>G</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>2.41</td>
<td>1.41</td>
<td>1</td>
<td>1.41</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Open:
(2.3)
(3.2)
(1.3)
(1.1)
(3.3)
(3.1)
(0.2)
(2.0)
(0.1)
(0.3)
(1.0)
(3.0)

Closed:
(2.2)
(1.2)
(2.1)
Recap Dijkstra

- Optimal solution in case of positive edge costs
- $O(|V| \log(|V|) + |E|)$
- Speed up with heuristic (A*)
Recap Dynamic Window Approach

Input: Obstacle Map, Current State, Goal Pose
Output: Next Control Input
Algorithm:
1. Sample feasible inputs
2. For all feasible inputs:
 1. Compute trajectory over horizon
 2. Score trajectory
 \[G(v, \omega) = \alpha \text{heading}(v, \omega) + \beta \text{dist}(v, \omega) + \gamma \text{velocity}(v, \omega) \]
3. Pick trajectory with best score
Recap Dynamic Window Approach

Local: Heading towards goal

Global: Heading towards gradient
Recap RRT

Input: Obstacle Map, Current State, Goal Pose
Output: Feasible Robot Path

Algorithm:
1. Sample random pose
2. Try to link random pose to nearest pose in graph.
3. Repeat until goal pose is in graph

Extra - Not exam material
Recap Kinodynamic RRT

Input: Obstacle Map, Current State, Goal Pose
Output: Feasible Robot Path
Algorithm:
(Same as RRT, step 2 in linking sample with graph is kinetic/dynamically constrained)

Extra - Not exam material