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 Manipulator arms versus mobile robots
 Robot arms are fixed to the ground and usually comprised of a single chain of actuated links
 The motion of mobile robots is defined through rolling and sliding constraints taking effect at 

the wheel-ground contact points
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Mobile Robot Kinematics: Overview

C Willow GarageRide an ABB, https://www.youtube.com/watch?v=bxbjZiKAZP4
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 Manipulator arms versus mobile robots
 Both are concerned with forward and inverse kinematics
 However, for mobile robots, encoder values don‘t map to unique robot poses
 And mobile robots can move unbound with respect to their environment
 There is no direct (=instantaneous) way to measure the robot’s position
 Position must be integrated over time, depends on path taken
 Leads to inaccuracies of the position (motion) estimate 

 Understanding mobile robot motion starts with understanding wheel constraints placed on 
the robot’s mobility
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Mobile Robot Kinematics: Overview
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 Non-holonomic systems
 differential equations are not integrable to the final position. 
 the measure of the traveled distance of each wheel is not sufficient to calculate the final 

position of the robot. One has also to know how this movement was executed as a function 
of time. 

 This is in strong contrast to actuator arms
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Non-Holonomic Systems
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 Forward kinematics:
 Transformation from joint to physical space

 Inverse kinematics
 Transformation from physical to joint space
 Required for motion control

 Due to non-holonomic constraints in mobile robotics, we deal with differential 
(inverse) kinematics
 Transformation between velocities instead of positions
 Such a differential kinematic model of a robot has the following form:
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Forward and Inverse Kinematics

(nonintegrable)  
Robot Model

(x,y,θ)(v,ω)
-

Control law
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 Wheels are the most appropriate solution for many applications

 Three wheels are sufficient to guarantee stability

 With more than three wheels an appropriate suspension is required

 Selection of wheels depends on the application
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Mobile Robots with Wheels
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 a) Standard wheel: Two degrees of 
freedom; rotation around the (motorized) 
wheel axle and the contact point

 b) Castor wheel: Three degrees of 
freedom; rotation around the wheel axle, 
the contact point and the castor axle
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The Four Basic Wheels Types
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 c) Swedish wheel: Three degrees of 
freedom; rotation around the 
(motorized) wheel axle, around the 
rollers and around the contact point

 d) Ball or spherical wheel: 
Suspension technically not solved
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The Four Basic Wheels Types
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 Stability of a vehicle is be guaranteed with 3 wheels
 If center of gravity is within the triangle which is formed by the ground contact point of the 

wheels. 
 Stability is improved by 4 and more wheel
 however, this arrangements are hyper static and require a flexible suspension system.

 Bigger wheels allow to overcome higher obstacles
 but they require higher torque or reductions in the gear box.

 Most arrangements are non-holonomic (see chapter 3)
 require high control effort

 Combining actuation and steering on one wheel makes the design complex 
and adds additional errors for odometry.
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Characteristics of Wheeled Robots and Vehicles
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 Two wheels

 Three wheels

Locomotion Concepts - add ons 10

Different Arrangements of Wheels I

Omnidirectional Drive Synchro Drive

COG below axle
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 All wheels are actuated synchronously by one motor
 defines the speed of the vehicle

 All wheels steered synchronously by a second motor
 sets the heading of the vehicle

 The orientation in space
of the robot frame will 
always remain the same
 It is therefore not possible

to control the orientation 
of the robot frame.
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Synchro Drive

C   J. Borenstein
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 Four wheels

 Six wheels
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Different Arrangements of Wheels II
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 Four powered and actively steered wheels
 Results in omni-drive-like behavior
 Results in simplified high-level planning (see chapter 6)
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Case Study: Willow Garage‘s PR2
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 Movement in the plane has 3 DOF
 thus only three wheels can be independently controlled
 It might be better to arrange three Swedish wheels in a triangle
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CMU Uranus: Omnidirectional Drive with 4 Wheels
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 Purely friction based
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Wheeled Rovers: Concepts for Object Climbing

Change of center of 
gravity
(CoG)

Adapted 
suspension mechanism with 

passive or active joints



|
Autonomous Mobile Robots
Roland Siegwart, Margarita Chli, Nick Lawrance 

ASL
Autonomous Systems Lab

 Passive locomotion concept 
 6 wheels
 two boogies on each side
 fixed wheel in the rear
 front wheel with spring 

suspension
 Dimensions
 length: 60 cm
 height: 20 cm

 Characteristics
 highly stable in rough terrain
 overcomes obstacles up to 

2 times its wheel diameter
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Climbing with Legs: Shrimp (ASL EPFL/ETH)



|
Autonomous Mobile Robots
Roland Siegwart, Margarita Chli, Nick Lawrance 

ASL
Autonomous Systems Lab

Locomotion Concepts - add ons 17

Kinematic Constraints: Fixed Standard Wheel
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3 - Mobile Robot Kinematics
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 Suppose that the wheel A is in position such that  = 0 and  = 0
 This would place the contact point of the wheel on XI with the plane of the 

wheel oriented parallel to YI. If  = 0, then the sliding constraint reduces to:
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Example
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Kinematic Constraints: 
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 Given a robot with M wheels
 each wheel imposes zero or more constraints on the robot motion
 only fixed and steerable standard wheels impose constraints

 Suppose we have a total of N=Nf + Ns standard wheels
 We can develop the equations for the constraints in matrix forms:
 Rolling

 Lateral movement
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Kinematic Constraints: Complete Robot
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 The maneuverability of a mobile robot is the combination
 of the mobility available based on the sliding constraints
 plus additional freedom contributed by the steering

 Three wheels is sufficient for static stability
 additional wheels need to be synchronized
 this is also the case for some arrangements with three wheels

 It can be derived using the equation seen before
 Degree of mobility
 Degree of steerability
 Robots maneuverability
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Mobile Robot Maneuverability
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 To avoid any lateral slip the motion vector            has to satisfy the following 
constraints:

 Mathematically:
 must belong to the null space of the projection matrix

 Null space of             is the space N such that for any vector n in N

 Geometrically this can be shown by the Instantaneous Center of Rotation (ICR)
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Mobile Robot Maneuverability: Degree of Mobility
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 Instantaneous center of rotation (ICR)

Ackermann Steering Bicycle
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Mobile Robot Maneuverability: ICR
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 Robot chassis kinematics is a function of the set of independent constraints

 the greater the rank of              the more constrained is the mobility

 Mathematically
 no standard wheels
 all direction constrained

 Examples:
 Unicycle: One single fixed standard wheel
 Differential drive: Two fixed standard wheels
 wheels on same axle
 wheels on different axle
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Mobile Robot Maneuverability: More on Degree of Mobility
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 Indirect degree of motion

 The particular orientation at any instant imposes a kinematic constraint
 However, the ability to change that orientation can lead additional degree of maneuverability

 Range of     : 

 Examples:
 one steered wheel: Tricycle
 two steered wheels: No fixed standard wheel
 car (Ackermann steering): Nf = 2, Ns=2        -> common axle
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Mobile Robot Maneuverability: Degree of Steerability
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 Degree of Maneuverability

 Two robots with same        are not necessary equal
 Example: Differential drive and Tricycle (see MOOC video segment or book)

 For any robot with              the ICR is always constrained 
to lie on a line

 For any robot with              the ICR is not constrained and 
can be set to any point on the plane

 The Synchro Drive example: 
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Mobile Robot Maneuverability: Robot Maneuverability
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Five Basic Types of Three-Wheel Configurations
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 The objective of a kinematic controller is to follow a trajectory described by its 
position and/or velocity profiles as function of time.

 Motion control is not straight forward because mobile robots are typically non-
holonomic and MIMO systems.

 Most controllers (including the one presented here) are not considering the 
dynamics of the system
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Wheeled Mobile Robot Motion Control: Overview
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 Trajectory (path) divided in motion segments of clearly 
 Defined shape:
 straight lines and segments of a circle
 Dubins car, and Reeds-Shepp car

 Control problem:
 pre-compute a smooth trajectory 

based on line, circle (and clothoid) segments 
 Disadvantages:
 It is not at all an easy task to pre-compute a feasible trajectory 
 limitations and constraints of the robots velocities and accelerations
 does not adapt or correct the trajectory if dynamical changes 

of the environment occur.
 The resulting trajectories are usually not smooth (in acceleration, jerk, etc.)
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Motion Control: Open Loop Control
yI

xI

goal



|
Autonomous Mobile Robots
Roland Siegwart, Margarita Chli, Nick Lawrance 

ASL
Autonomous Systems Lab

 Find a control matrix K, if exists

with kij=k(t,e)
 such that the control of v(t) and (t)

 drives the error e to zero

 MIMO state feedback control
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Motion Control: Feedback Control
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 The kinematics of a differential drive mobile 
robot described in the inertial frame { xI, yI, } 
is given by,

 where 𝑥 and 𝑦 are the linear velocities in the direction 
of the xI and yI of the inertial frame.

 Let 𝛼 denote the angle between the xR axis of the robots reference frame and 
the vector  connecting the center of the axle of the wheels with the final 
position.
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Motion Control: Kinematic Position Control
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 Coordinates transformation into polar coordinates with its origin 
at goal position:

 System description, in the new polar coordinates
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Kinematic Position Control: Coordinates Transformation

for for
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 The coordinates transformation is not defined at x = y = 0; 

 For              the forward direction 
of the robot points toward the goal, 
for               it is the backward direction.

 By properly defining the forward direction of the robot at its initial configuration, 
it is always possible to have            at t=0. However this does not mean that 
remains in I1 for all time t. 
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Kinematic Position Control: Remarks
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 It can be shown, that with

the feedback controlled system 

will drive the robot to 
 The control signal v has always constant sign, 
 the direction of movement is kept positive or negative during movement 
 parking maneuver is performed always in the most natural way and without ever inverting its 

motion.
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Kinematic Position Control: The Control Law

𝜌,𝛼,𝛽 0, 0, 0
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 The goal is in the center and the initial position on the circle.
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Kinematic Position Control: Resulting Path

𝑘 𝑘 , 𝑘 ,𝑘 3, 8, 1.5


