

Exercise 2:
 Mobile Robot Kinematics and Control

Lukas Schmid, Max Brunner
Based on slides by Anurag Vempati

Mobile Robot Control

- How can the robot reach a goal position from its current state?

Mobile Robot Control

- Kinematic model: Wheel speeds needed for achieving particular robot motion
- Control: What robot motion (speeds) will be needed to get to the goal state

Kinematics

- Differential drive kinematic model:

$$
\begin{aligned}
v & =\frac{r \dot{\phi}_{r}}{2}+\frac{r \dot{\phi}_{l}}{2} \\
\omega & =\frac{r \dot{\phi}_{r}}{2 l}-\frac{r \dot{\phi}_{l}}{2 l}
\end{aligned}
$$

- Robot description:
- wheel speeds + intrinsics \leftrightarrow robot speed
- More complex descriptions:
- Include forces, dynamic constraints

Control

- Error: $\quad e={ }^{R}[x, y, \theta]^{T}$

$$
\left[\begin{array}{c}
v(t) \\
\omega(t)
\end{array}\right]=K \cdot e=K\left[\begin{array}{l}
x \\
y \\
\theta
\end{array}\right] \quad \Longrightarrow \quad K=\left[\begin{array}{lll}
k_{11} & k_{12} & k_{13} \\
k_{21} & k_{22} & k_{23}
\end{array}\right] \quad \text { with } k_{i j}=k(t, e)
$$

- Find K such that $\lim _{t \rightarrow \infty} e(t)=0$
- Proportional control: Robot not actuated when at the goal position

Control

- Motion of the robot in inertial frame
- Kinematic of differential-drive robot in Inertial frame:

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & 0 \\
\sin \theta & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
v \\
\omega
\end{array}\right]
$$

- Cartesian \rightarrow Polar coordinates
- Easier description for the given problem
- What does the controller need?
- Position \rightarrow decide speed
- Heading \rightarrow for alignment to goal location
- Orientation \rightarrow for aligning with goal orientation

Control

- Inertial \rightarrow Polar transformation

$$
\begin{aligned}
& \rho=\sqrt{\Delta x^{2}+\Delta y^{2}} \\
& \alpha=-\theta+\operatorname{atan} 2(\Delta y, \Delta x) \\
& \beta=-\theta-\alpha
\end{aligned}
$$

- Kinematics model:

$$
\left[\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right]=\left[\begin{array}{cc}
-\cos \alpha & 0 \\
\frac{\sin \alpha}{\rho} & -1 \\
-\frac{\sin \alpha}{\rho} & 0
\end{array}\right]\left[\begin{array}{l}
v \\
\omega
\end{array}\right]
$$

NOTE:

heading \leftrightarrow speed relation

Control law

- Simple linear control law:

$$
\begin{aligned}
& v=k_{\rho} \rho \\
& \omega=k_{\alpha} \alpha+k_{\beta} \beta
\end{aligned}
$$

- Closed-loop system description:

$$
\left[\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right]=\left[\begin{array}{c}
-k_{\rho} \rho \cos \alpha \\
k_{\rho} \sin \alpha-k_{\alpha} \alpha-k_{\beta} \beta \\
-k_{\rho} \sin \alpha
\end{array}\right]
$$

Local stability

- Linearizing the system around equilibrium
- (for $x \sim 0$: $\cos (x) \sim 1 ; \sin (x) \sim x)$:

$$
\left[\begin{array}{c}
\dot{\rho} \\
\dot{\alpha} \\
\dot{\beta}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
-k_{\rho} & 0 & 0 \\
0 & -\left(k_{\alpha}-k_{\rho}\right) & -k_{\beta} \\
0 & -k_{\rho} & 0
\end{array}\right]}_{\boldsymbol{A}}\left[\begin{array}{c}
\rho \\
\alpha \\
\beta
\end{array}\right]
$$

- Locally exponentially stable if the eigenvalues of the matrix A all have negative real part.
- Characteristic polynomial of A ($\left.\operatorname{det}\left(A-\lambda^{*}\right)\right)$:

$$
\left(\lambda+k_{\rho}\right)\left(\lambda^{2}+\lambda\left(k_{\alpha}-k_{\rho}\right)-k_{\rho} k_{\beta}\right)
$$

Local stability

- Negative real parts for all the roots of characteristic polynomial:

$$
k_{\rho}>0 ; \quad-k_{\beta}>0 ; \quad k_{\alpha}-k_{\rho}>0
$$

