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I. INTRODUCTION

Although advanced motion planning algorithms allow

legged robots to traverse autonomously challenging terrains

[5], in order to achieve full autonomy these robots need to have

both environment mapping and self-localization implemented

on-board. There are two issues that make the Simultaneous

Localization and Mapping (SLAM) problem particularly hard

if a legged robotic platform in unstructured environment is

considered: (i) the environment maps employed by typical

SLAM algorithms rarely are suitable for supporting motion

planning functions (foothold selection, leg trajectories plan-

ning, etc.), (ii) legged robots that plan their motion require very

accurate pose estimates. Our earlier experiments demonstrated

[2] that it is necessary to achieve localization accuracy of

about the diameter of our robot’s foot to register the range

data into a local elevation map that enables reliable foothold

planning. Moreover, an autonomous walking robot requires a

dense representation of the terrain for planning. While some

state-of-the-art 3-D SLAM systems build voxel-based maps,

they usually rely on massive parallel processing to handle

the huge amount of range data [13]. Such approach is not

suitable for most legged robots, due to the power consumption

of a high-end GPGPU. Therefore, an autonomous legged robot

needs a SLAM algorithm that is very accurate, runs in real-

time without hardware acceleration and is coupled with a

dense mapping method that can reflect the uncertainty of both

the range measurements and the robot’s pose estimate.

In the workshop presentation we demonstrate the algorithms

and techniques we used to create a system that meets the

aforementioned requirements and is implemented on our au-

tonomous walking robot Messor II. Moreover, we discuss the

methods used to evaluate the system, in both the qualitative

and quantitative aspects. We present results of experiments in

controlled and natural environments and point out the need

to create benchmark data sets appropriate for evaluation of

SLAM/mapping in challenging environments.

II. SYSTEM ARCHITECTURE

We introduce the PUT SLAM system, which is a SLAM

solution based on the factor graph optimization approach

and a persistent, scalable map of 3-D point features. This

system follows the non-linear optimization approach to state
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Fig. 1. Block scheme of the PUT SLAM with dense mapping system

estimation, which is currently considered to be the state-of-the-

art method in SLAM. PUT SLAM implements a number of

novel ideas, such like the fast visual odometry subsystem [3]

that predicts the sensor (robot) pose with respect to the large

map of features, thus enabling more robust feature matching.

The SLAM system allows the RGB-D data processing front-

end and the optimization back-end to work fully in parallel,

thus achieving real-time performance on a multi-thread CPU

with no GPGPU. The back-end is based on the g2o general

graph optimization library [9].
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Fig. 2. Messor II robot with Asus Xtion and the chessboard marker (a), and
a view of the experimental setup from an overhead camera

The SLAM system is coupled with a dense terrain map-

ping component. This component is based upon our earlier

elevation mapping algorithm [1] that models the grid map as

a Markov Random Field of order 0, where the state of each

individual cell can be estimated as an independent random

variable. Therefore, we use a scalar Kalman filter at each cell

to efficiently handle the sparse and uncertain range data when
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Fig. 3. Trajectories for an exemplary Messor II sequence: ground truth (a), PUT SLAM (b), ORB-SLAM2 (c), CCNY RGBD (d), RGB-D SLAM v2 (e),
KinFu LS (f)

we update the elevation values. Moreover, we implement a

number of heuristics (e.g. line-of-sight visibility checking) to

cope with spurious measurements. When we have a robot pose

estimate from the PUT SLAM system we can also take into

account the sensor location uncertainty, in a way similar to the

one proposed in [8]. This allows us to reduce the drift of the

local maps with respect to the fixed global coordinate system.

III. EXPERIMENTAL EVALUATION

The proposed SLAM and terrain mapping approach is

currently investigated and evaluated using various data sets

and robotic platforms. The PUT SLAM was tested on publicly

available data sets in order to ensure that our results are

verifiable. On the TUM RGB-D benchmark [12] we achieved

the sensor trajectory recovery accuracy that is equal or even

better than the best results published so far [6]. However, the

available benchmark data sets do not allow us to test the

system under conditions that are specific to walking robots,

such like limited field of view of the sensor and vibrations

of the platform. Therefore, we tested various versions of

our system on the real legged machine Messor II with an

Asus Xtion PRO Live RGB-D sensor. To obtain quantitative

results demonstrating the accuracy of PUT SLAM we have

performed a series of experiments on a small terrain mockup

(Fig. 2a). The ground truth trajectories were obtained using

the PUT Ground Truth system, which uses ceiling-mounted,

high-resolution passive cameras (Fig. 2b). The Xtion RGB-

D frames were registered synchronously with the overhead

camera images at the frequency of 15 Hz, due to frame rate

limit of the cameras [11]. Evaluation of the SLAM systems

is based on the Absolute Trajectory Error (ATE) and Relative

Pose Error (RPE) metrics [12].

The ATE compares the distance between the estimated and

ground truth trajectories, and is computed from the Root

Mean Square Error (RMSE) for all nodes of the ground truth
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Fig. 4. Outdoor experiment on rough terrain – semi-loop trajectory: example
view of the site with the Messor II robot and sample RGB-D frames (a),
trajectory recovered by the PUT SLAM system (b)

and the estimated trajectory, whereas RPE corresponds to the

local drift of the trajectory. Figure 3 demonstrates exemplary

results we obtained in these experiments. The Messor II

used its default tripod gait at 45% of the maximum speed.

The trajectory resembled a rectangle of the lap size equal

to 2 m (Fig. 3a). Using PUT SLAM we got a reasonably

precise trajectory estimate (Fig. 3b), whereas other open-

source SLAM systems we have tested on the data set obtained

with the Messor II robot produced much worse results, like

the Kalman-filter-based CCNY RGBD and the pose-graph-

based RGB-D SLAM v2 [7]. The monocular ORB-SLAM2

[10], which yields very precise pose estimates on typical data

sets was unable to complete the experiment loosing tracking

on blurred RGB images. Also the KinFu Large Scale (LS)



software, an open-source re-implementation of the Kintinuous

algorithm [13] failed on all the trajectories registered from

the walking robot, apparently due to problems caused by fast

rotations and too low frame rate of the depth images.

Fig. 5. Example of an elevation map built on-line from Asus Xtion data and
used for motion planning

We have also tested the qualitative behavior of the PUT

SLAM system in conditions that resembled a real construction

site (under proper lighting conditions), as shown in Fig. 4 [4].

The mapping component was tested on the real robot as well,

indoors (Fig. 5) and outdoors [5].
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Fig. 6. Terrain mapping experiment on a rocky terrain mockup

However, in this case the problem is the lack of publicly

available benchmarks that provide both trajectory and dense

environment map ground truth. We consider development of

such a benchmark data set as necessary to foster research

on fully autonomous ground robots. Without the map and

trajectory ground truth we can test the integration of the terrain

mapping subsystem in PUT SLAM only quantitatively, as

demonstrated in Fig. 6 and Fig. 7. The precise pose estimate

obtained from the feature-based RGB-D SLAM allows the

elevation map to correctly represent objects, as seen in Fig.

7b, whereas the map built using only the pose estimate from

proprioceptive sensing (Fig. 7a) is blurred.
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based RGB-D visual navigation systems”, Computer Vision – ACCV
2014 (D. Cremers et al., eds.), LNCS Vol. 9004, Springer, 2015, 407–
423.

[4] D. Belter, M. Nowicki, P. Skrzypczyński, K. Walas, J. Wietrzykowski,
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