IROS 2016 Workshop on

> State Estimation and Terrain Perception
> Daejeon Convention Center - Daejeon, Korea

Multi-Sensor State Estimation on Dynamic Quadruped Robots

Marco Camurri
marco.camurri@iit.it
Dynamic Legged System Lab
Istituto Italiano di Tecnologia - Genoa, Italy
fit
ISTITUTO ITALIANO DI TECNOLOGIA
ADVANCED ROBOTICS

1) Hydraulic Quadruped (HyQ)

- Description
- Characteristic motions
- Sensors

2) State Estimation

- Overview
- Modules
- Applications

3) Mapping

- Definition
- Applications

Hydraulic Quadruped (HyQ)

Specifications

- 12 Degrees of Freedom
- ~80 kg
- $1 \mathrm{mx} 0.5 \mathrm{mx} \sim 0.8 \mathrm{~m}$
- Fully torque controlled
- Fully hydraulic
- 145 Nm (at 16 MPa)

http://www.iit.it/hyq

Characteristic Motions

- Planned crawl
- Trot
- Flying trot
- Chimney Climb
https://www.youtube.com/HydraulicQuadruped

MiniHyQ, HyQ2Max, and...

MiniHyQ

HyQ2Max (source: Reuters)

MOOG

MOOG @ IIT Joint Lab Integrated Servo Actuators
http://moog.iit.it

Sensors

- Microstrain GX3-25
- Optical encoders
- Load cells
- ASUS Xtion
- Multisense SL
- Hokuyo URG-04LX

State Estimation

- Modular
- EKF-based
- History of meas.
- Open Source*
- Used/tested for the DRC (MIT, ViGIR, ...)
- LCM ${ }^{\S}$ based

- Proprioceptive:
- IMU (prediction)
- Leg Odometry
- Exteroceptive:
- Visual Odometry (FOVIS)
- Gaussian Particle Filter (GPF)
- Fast and Robust Scan Matcher (FRSM)
- Vicon (ground truth)
- Proprioceptive:
- IMU (prediction) \rightarrow bias, drift
- Leg Odometry \rightarrow drift, slippage, leg compliance
- Exteroceptive:
- Visual Odometry (FOVIS) \rightarrow featureless areas
- Gaussian Particle Filter (GPF) \rightarrow pre-acquired map
- Fast and Robust Scan Matcher (FRSM) \rightarrow only planar
- Vicon (ground truth)

State Estimation Scheme

- Ground Reaction Forces estimation
- Stance Detection
- Velocity computation
- Covariance estimation

RANGE - Robust Autonomous Navigation in GPS-denied Environments Abraham Bachrach, Samuel Prentice, Ruijie He Nicholas Roy
Journal of Field Robotics, 2011

- RCF with push recovery
- Robot controlled to stay on target position
- Hokuyo URG 04-LX

A reactive controller framework for quadrupedal locomotion on challenging terrain Victor Barasuol, Jonas Buchli, Claudio Semini, Marco Frigerio, Edson R De Pieri, Darwin G Caldwell 2013 IEEE International Conference on Robotics and Automation (ICRA)

Gaussian Particle Filter

- Tested on Atlas/Drones
- Suitable for aggressive motions
- High Quality map required

State estimation for aggressive flight in GPS-denied environments using onboard sensing A. Bry, A. Bachrach and N. Roy

2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, 2012

Gaussian Particle Filter

IMU+Leg Odometry

IMU+Leg Odometry+Gaussian Particle Filter

- Tested on Atlas/Drones
- Lightweight
- Position or velocity measure

Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera.
Albert S. Huang, Abraham Bachrach, Peter Henry, Michael Krainin, Daniel Maturana, Dieter Fox, and Nicholas Roy. Int. Symposium on Robotics Research (ISRR), Flagstaff, Arizona, USA, Aug. 2011

Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera.
Albert S. Huang, Abraham Bachrach, Peter Henry, Michael Krainin, Daniel Maturana, Dieter Fox, and Nicholas Roy. Int. Symposium on Robotics Research (ISRR), Flagstaff, Arizona, USA, Aug. 2011

- Selective ICP: register only the points in motion, geometrically relevant
- Fuse with IMU

Real-time depth and inertial fusion for local slam on dynamic legged robots.
M. Camurri, S. Bazeille, C. Semini, and D. G. Caldwell

IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 2015

- Frame-to-frame background subtraction
- Morphologic dilation
- Point cloud selection
- Iterative Closest Point (ICP) registration
- Black image (no edges) \rightarrow no motion

Real-time depth and inertial fusion for local slam on dynamic legged robots.
M. Camurri, S. Bazeille, C. Semini, and D. G. Caldwell

IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 2015

Mapping

- Current sensed cloud is the most trustworthy
- Current map should accumulate drift backwards

$$
M_{n}=M_{(n-1)}+{ }_{(n-1)} T_{n} \cdot C_{n}
$$

- Current map is the newest cloud plus previous map aligned to the current cloud
- Less accurate data is the oldest, and automatically discarded when out of scope

Real-time depth and inertial fusion for local slam on dynamic legged robots.
M. Camurri, S. Bazeille, C. Semini, and D. G. Caldwell

IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 2015

- Local heightmap around target footholds
- Each heightmap is classified to select an offset correction on the touch down coordinate

Reactive trotting with foot placement corrections through visual pattern classification
V. Barasuol, M. Camurri, S. Bazeille, D. G. Caldwell and C. Semini

Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, Hamburg, 2015

- Scan with PTU
- Scan Merging with Octomap
- Feature extraction
- Reward computation
- Planning from reward map

On-line and On-board Planning and Perception for Quadrupedal Locomotion
C. Mastalli, I. Havoutis, A. W. Winkler, D. G. Caldwell and C. Semini

IEEE International Conference on Technologies for Practical Robot Applications (TEPRA) 2015

- State Estimation is crucial for robot control, mapping and planning
- Multiple sources help being robust against more scenarios
- Local mapping helps keeping uncertainty away from where you want to operate

The Dynamic Legged System Lab and friends:

Claudio Semini

Marco Frigerio

Victor Barasuol

Michele Focchi

Andreea Radulescu

Alex Posatskiy

Bilal Ur Rehman

Jose Colmenares

Carlos Mastalli

Marco Camurri

Yifu Gao

Sep Driessen

Roy Featherstone

Romeo Orsolino

Janne Koivumaki

Thanks for your attention! Questions?

marco.camurri@iit.it

