

IROS 2016 Workshop on State Estimation and Terrain Perception Daejeon Convention Center - Daejeon, Korea

Multi-Sensor State Estimation on Dynamic Quadruped Robots

Marco Camurri marco.camurri@iit.it Dynamic Legged System Lab Istituto Italiano di Tecnologia – Genoa, Italy

Summary

1) Hydraulic Quadruped (HyQ)

- Description
- Characteristic motions
- Sensors

2) State Estimation

- Overview
- Modules
- Applications
- 3) Mapping
 - Definition
 - Applications

Hydraulic Quadruped (HyQ)

October 14th, 2016

Marco Camurri

October 14th, 2016

Specifications

- 12 Degrees of Freedom
- ~80 kg
- 1 m x 0.5 m x ~0.8 m
- Fully torque controlled
- Fully hydraulic
- 145 Nm (at 16 MPa)

http://www.iit.it/hyq

Characteristic Motions

- Planned crawl
- Trot
- Flying trot
- Chimney Climb

https://www.youtube.com/HydraulicQuadruped

MiniHyQ, HyQ2Max, and...

MiniHyQ

HyQ2Max (source: Reuters)

MOOG @ IIT Joint Lab Integrated Servo Actuators

http://moog.iit.it

Sensors

- Microstrain GX3-25
- Optical encoders
- Load cells
- ASUS Xtion
- Multisense SL
- Hokuyo URG-04LX

October 14th, 2016

State Estimation

October 14th, 2016

Marco Camurri

Pronto

- Modular
- EKF-based
- History of meas.
- Open Source*
- Used/tested for the DRC (MIT, ViGIR, ...)
- LCM[§] based

Drift-free humanoid state estimation fusing kinematic, inertial and LIDAR sensing
M. Fallon, M. Antone, N. Roy and S. Teller§ https://lcm-proj.github.io/2014 IEEE-RAS International Conference on Humanoid Robots, Madrid, 2014 *https://github.com/ipab-slmc/pronto-distro

October 14th, 2016

Marco Camurri

Modules

- Proprioceptive:
 - IMU (prediction)
 - Leg Odometry

• Exteroceptive:

- Visual Odometry (FOVIS)
- Gaussian Particle Filter (GPF)
- Fast and Robust Scan Matcher (FRSM)
- Vicon (ground truth)

Modules

• Proprioceptive:

- IMU (prediction) → bias, drift
- Leg Odometry → drift, slippage, leg compliance

• Exteroceptive:

- Visual Odometry (FOVIS) → featureless areas
- Gaussian Particle Filter (GPF) → pre-acquired map
- Fast and Robust Scan Matcher (FRSM) → only planar
- Vicon (ground truth)

State Estimation Scheme

October 14th, 2016

Marco Camurri

Leg Odometry

ITALIANO DI TECNOLOGIA

- Ground Reaction Forces estimation
- Stance Detection
- Velocity computation
- Covariance estimation

FRSM and Trunk Control

- RCF with push recovery
- Robot controlled to stay on target position
- Hokuyo URG 04-LX

RANGE - Robust Autonomous Navigation in GPS-denied Environments *Abraham Bachrach, Samuel Prentice, Ruijie He Nicholas Roy* Journal of Field Robotics, 2011

A reactive controller framework for quadrupedal locomotion on challenging terrain Victor Barasuol, Jonas Buchli, Claudio Semini, Marco Frigerio, Edson R De Pieri, Darwin G Caldwell 2013 IEEE International Conference on Robotics and Automation (ICRA)

October 14th, 2016

Gaussian Particle Filter

- Tested on Atlas/Drones
- Suitable for aggressive motions
- High Quality map required

State estimation for aggressive flight in GPS-denied environments using onboard sensing *A. Bry, A. Bachrach and N. Roy* 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, 2012

October 14th, 2016

Gaussian Particle Filter

IMU+Leg Odometry

IMU+Leg Odometry+Gaussian Particle Filter

FOVIS

- Tested on Atlas/Drones
- Lightweight
- Position or velocity measure

Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera.

Albert S. Huang, Abraham Bachrach, Peter Henry, Michael Krainin, Daniel Maturana, Dieter Fox, and Nicholas Roy. Int. Symposium on Robotics Research (ISRR), Flagstaff, Arizona, USA, Aug. 2011

October 14th, 2016

FOVIS

 Tested on Atlas/Drones

- Lightweight
- Position or velocity measure

Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera. Albert S. Huang, Abraham Bachrach, Peter Henry, Michael Krainin, Daniel Maturana, Dieter Fox, and Nicholas Roy. Int. Symposium on Robotics Research (ISRR), Flagstaff, Arizona, USA, Aug. 2011

October 14th, 2016

Selective ICP

ISTITUTO

ITALIANO DI TECNOLOGIA

Fuse with IMU

Real-time depth and inertial fusion for local slam on dynamic legged robots.

M. Camurri, S. Bazeille, C. Semini, and D. G. Caldwell IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 2015

October 14th, 2016

Selective ICP

- Frame-to-frame background subtraction
- Morphologic dilation
- Point cloud selection
- Iterative Closest Point (ICP) registration
- Black image (no edges)→ no motion

Real-time depth and inertial fusion for local slam on dynamic legged robots. *M. Camurri, S. Bazeille, C. Semini, and D. G. Caldwell* IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 2015

October 14th, 2016

Mapping

October 14th, 2016

Marco Camurri

- Current sensed cloud is the most trustworthy
- Current map should accumulate drift backwards

$$M_n = M_{(n-1)} + {}_{(n-1)}T_n \cdot C_n$$

- Current map is the newest cloud plus previous map aligned to the current cloud
- Less accurate data is the oldest, and automatically discarded when out of scope

Real-time depth and inertial fusion for local slam on dynamic legged robots. *M. Camurri, S. Bazeille, C. Semini, and D. G. Caldwell* IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 2015

October 14th, 2016

Visual Pattern Classification

- Local heightmap around target footholds
- Each heightmap is classified to select an offset correction on the touch down coordinate

Reactive trotting with foot placement corrections through visual pattern classification *V. Barasuol, M. Camurri, S. Bazeille, D. G. Caldwell and C. Semini* Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, Hamburg, 2015

October 14th, 2016

Marco Camurri

ISTITUTO

ITALIANO DI TECNOLOGIA

Octomap and planning

- Scan with PTU
- Scan Merging with Octomap
- Feature extraction
- Reward computation
- Planning from reward map

On-line and On-board Planning and Perception for Quadrupedal Locomotion

C. Mastalli, I. Havoutis, A. W. Winkler, D. G. Caldwell and C. Semini IEEE International Conference on Technologies for Practical Robot Applications (TEPRA) 2015

October 14th, 2016

- State Estimation is crucial for robot control, mapping and planning
- Multiple sources help being robust against more scenarios
- Local mapping helps keeping uncertainty away from where you want to operate

The Dynamic Legged System Lab and friends:

Claudio Semini

Marco Frigerio

Victor Barasuol

Michele Focchi

Romeo Orsolino

Andreea Radulescu

Alex Posatskiy

Jose Colmenares

Marco Camurri

Yifu Gao

Janne Koivumaki

Elco Heijmink

Bilal Ur Rehman

Carlos Mastalli

Sep Driessen

October 14th, 2016

Thanks for your attention! Questions?

marco.camurri@iit.it

October 14th, 2016

Marco Camurri